CENTRAL LIBRARY BOTANICAL SURVEY OF INDIA

CLASS NO. 6/3:21

воок № А 977и

AIT

HEALTH BULLETIN

THE NUTRITIVE VALUE OF INDIAN FOODS AND THE PLANNING OF SATISFACTORY DIETS

BY

W. R. AYKROYD

Ex-Director, Nutrition Research Laboratories[^] Indian Research Fund Association) Coonoor.

FIFTH EDITION

BY

V. N. PATWARDHAN, Director

AND

S. RANGANATHAN, Chief Chemist

Nutrition Research Laboratories, Indian Council of Medical Research Coonoor.

2 (

636 a

) IN INDIA BY THE MANAGER, GOVT. OF INDIA PRESS OAD PUBLISHED BY THE MANAGER OF PUBLICATIONS, DEL.HI 1956

Price: As. 8 or gd.

CORRIGENDA

P. 21, Line 9— Rèad "a green leafy vegetable" instead of "green leafy vegetables". P. 29-Figure for iron, item No. 1— Read "25" in place of "\$-1". Figure fbrjnoisture, for item No. 6— Read "22-3" for "2-3". Figure for phosphorus, for item No. 79— Read "79" for "790". P. 30, Footnote to p- 30— Capital "S" in sun-dried to be replaced by small "S". P. 37— Figure for Vitamin C, for item No. 12— Read "6" for "1". Figure for Riboflavin, for item No. 3— **Read** "0" for"..". P. 41, Figure for Riboflavin, for item No. 46— Read''6Q''for''..'! P.r47, Figure for Nicotinic acid, for item No. 29— "for".." Read ''0-1' P. 48, Botanical name for item No. 36— Read "Prunus" for "Amygdalis". P. 49, Figure for Riboflavin, for item No. 36— Read "10" for "1". P. 51, Column No. 30— Read "Vitamin B_{\pm} jig" for "vitamin B mg". P. 51, Column No. 31— Read "Nicotinic acid, mg"for "Nicotinic acid, jxg • \ P. 53, Figure for vitamin B_x for item No. 11— Read "26" for "126". P. 55.—' Boianical name for Red Palm Oil, item No. 18— Read "guineensis" for "quineensis". Botanical name for "Singhara", item No. 20— Read "Trapa" for "Trappa". P. 68-"Arisithippili" and Asafoetida (the last two foodstuffs in the page) included under "Nuts and Oilseeds". They should be under "condiments, spices etc.". P. 70, Botanical name for Durain (third item from bottom)— Read "Durio Zibethinus" for "Durizibethinus". P. 76— Telugu equivalent for Milk, Cow's— Read "Avu Palu" for "Avu Palu or (Geda Palu)". Telugu equivalent for Milk, buffalo's— Read "Geda Palu or Barrae Palu" for "Barrae Palu".

GIPN—N. S. V—2 Dte. G.H.S./56—14-2-57—6,000.

NOTE ON THE FIFTH EDITION

The Fifth Edition contains only minor changes in the text. A few foodstuffs, recently analysed in these Laboratories and not reported upon earlier, are included; also figures for vitamin B_2 and riboflavin for a number of foodstuffs, either, analysed in the Laboratories or collected from published work in India, are given.

Criticism had been levelled against the outmodecf botanical equivalents given in the earlier editions to foodstuffs listed in the tables; they have been replaced by the modern and scientifically accepted equivalents, thanks to the publication of Drs. D. Chatterjee and G. S. Randhawa. Thanks are also due to Dr. C. Gopalan for helpful suggestions regarding the text and to Dr. L. S. S. Kumar for theGujarati and Marathi equivalents of foodstuffs given in*Ap-* pendix II.

COONOOR:

V. N. PATWARDHAN

September, 1954.

S. RANGANATHAN

NOTE ON THE FOURTH EDITION

The popularity of Health Bulletin No. 23 continues unabated. The third edition was published in 1941 and reprinted in 1946 With only minor alterations. During the last seven years, much new information bearing on the nutritive value of foods, requirements of energy, protein, minerals, vitamins, etc., had accumulated. The Nutrition Advisory Committee of the Indian Research Fund Association had recommended in 1944 certain scaks of dietary allowances for Indians. All this information had to be incorporated in the new edition if the Health Bulletin were to continue to serve the object with which it was published. In consequence, some sections in the text had to be entirely recast and certain others enlarged-It was also found necessary to alter, in a few instances,* the sequence of sections. It is felt that all these changes will materially add to the value of the Bulletin.

The Food Value Tables remain much the same as in the previous edition except for a few additional items under "Flesh Foods", In view of the growing importance of nicotinic acid and riboflavin figures for these vitamins have been included for as many foods as possible. The authors are painfully aware of the many gaps here but they hope to fill the lacunae in a future edition.

Appendix II includes in addition to Hindustani the equivalents in various other rovincial languages. The authors' grateful thanks are due to Mr. P. V. Ramiah for helping with the Tamil and Telugu, Dr. B. Nayak for the Oriya, Dr. D. N. Chatterjee for the Bengali, Mr. Narayan Das for the Kanarese and to Dr. R. M. Mathew for the Malayalam equivalents.

V. N. PATWARDHAN
S. RANGANATHAN

INTRODUCTION TO FIRST EDITION

The purpose of this Bulletin is to summarise the available know-ledge about the nutritive value of Indian foodstuffs for the benefit of public health workers, medical practitioners, superintendents of residential institutions and others interested in practical dietetics. With the help of the tables provided it is possible to work out "balanced diets" for individuals or groups. To do this, however, it is necessary to know what is meant by a "balanced diet". A brief statement outlining modern dietetic principles is, therefore, provided in the first sections of the Bulletin.

The bulk of the data presented is based on work carried out in the Nutrition Research Laboratories, Coonoor, where a special enquiry into the nutritive value of Indian foods has been financed by the Indian Research Fund Association. The Bulletin has been prepared in the Laboratories, and practically every member of the staff has contributed to the work on which it is based. Use has however, also been made of scientific articles published in India and elsewhere (notably from the Department of Bio-chemistry and Nutrition, All-India Institute of Hygiene and Public Health, Calcutta, under Professor H. Ellis C. Wilson) which contain material of value. While a good deal more work is necessary on the nutritive value of Indian foodstuffs, sufficient data are already available to justify the publication of the Bulletin for use in practical nutrition work.

W. R. AYKROYD, M.D.,

Director, Nutrition Research Laboratories, Indian Research Fund Association* Coonoor.

THE NUTRITIVE VALUE OF INDIAN FOODS AND THE PLANNING OF SATISFACTORY DIETS

INTRODUCTION ·

Food is the prime necessity of life. There must be enough of it so that every individual is able to get what he needs. Such needs must be defined scientifically with due regard to vigorous growth, health and longevity requirements. So much has been learnt on the subject of food during the last four decades that the importance of correct feeding for a healthy life has been convincingly demonstrated. The planning of a satisfactory diet can, however, only be successful, if carried out on a scientific basis, for the knowledge that we possess to-day does not confirm the general belief that appetite is a safe guide for the selection of food. An attempt has, therefore, been made in the following pages to give a brief outline of the general dietetic principles governing the planning of a satisfactory diet; this has been done in a language which may be intelligible to the lay public.

PROXIMATE PRINCIPLES

•» Foods are divided into cereals, pulses, nuts and oilseeds, vegetables, fruits, milk and milk products, flesh foods and condiments and spices. They contain, in general, proteins, fats, carbohydrates, vitamins and mineral salts. Proteins, fats and carbohydrates are often termed "proximate principles."; they are sometimes referred to as energy-yielding food factors, since they are "burnt" or. oxidized in the body to provide the energy for life. Vitamins and mineral salts do not supply energy, but they play an important part in the physiological functions of the body. Water is also a necessary dietary element. Human beings, like other animals, require a sufficiency of these if they are to live and thrive. A well-balanced diet should contain the various factors in correct proportions.

In dealing with diet, it is well to remember the distinction between an *optimum* and an *adequate* diet. An optimum diet is one which ensures the functioning of the various life processes at their very best, whereas an adequate diet maintains these processes but not at their peak levels. While it is desirable to work up to standards laid down for an optimum diet, it is essential to know whether enough food is being provided; every effort should be made to ensure at least the standards fixed for art' adequate diet.

Our present knowledge of what constitutes an adequate or optimum diet is based on an enormous amount of research work on human beings and laboratory animals carried out in many countries. It is now fairly easy to assess how much of each food factor is required for good nutrition and what it means in terms of common foodstuffs. Likewise, it is also easy to measure the extent to which diets in common use are adequate for health and, to estimate the amounts of the different foodstuffs needed to bring the diet of a given population up to the requisite standard.

Proteins .

Proteins are organic nitrogenous substances. They play an important role in ensuring the quality of a diet. In a sense, they may be stated to be one of the most important of the food'factors; they supply building material for the body and make good the loss of tissue which is incurred during the complicated physiological processes which maintain life. They can also be used as a source of energy, but this would be somewhat wasteful!

Most foodstuffs contain protein, as can be seen from the Tables, but the amount they, contain varies widely. Animal foods such as meat, fish and eggs are rich in protein; milk can also be considered as being rich in protein if due account is taken of the water that is present in it. Among the vegetable foods, the pulses and nuts are richest in protein, often exceeding the amounts present in animal foods. Soya bean is unique in this respect in that it contains over 40 per cent, protein. The common cereals such as rice, wheat, barley, etc., contain a fair proportion of protein, rice being one of the poorest and wheat the richest among cereals in this respect. The outer layers of the grain are richer in protein than the inner starchy kernel, and when wheat and rice are highly milled, there is thus some loss of protein as well as of other valuable factors, such as vitamins and mineral salts. Leaf/and root vegetables and fruits do not contain much protein, but if they are abundantly present in a diet their contribution to total protein intake is by no means negligible.

Since proteins supply building material for the body, it is but natural to expect that growing children require, per unit of body-weight, more protein than adults. The new tissue which is being laid down is largely built up of elements drawn from protein. For the same reason, the protein needs of women during pregnancy and lactation are greater than at other times. The protein allowances suggested as a rough guide for practical nutrition work in India are given on Page 15. According to modern concepts, the protein allowance is adequate if it is of the order of one gramme per kilogramme of body-weight. Since Indian diets have generally a preponderance of proteins derived from vegetable sources and as these are usually of lower biological value than proteins of animal origin, a higher scale of allowance has been recommended by the Indian nutrition experts. Even with vegetable proteins alone, it will be possible to achieve the desired effect at a lower overall level through a proper combination of two or more of them. Deficiencies of aminoacids in one protein will be made good by an excess in another.

The total protein content of a diet can be estimated by means of Tables. But more important than the total protein content of a diet is the proportion of protein of high biological value which it includes. Proteins present in various foods differ in their *amino-acid* composition; *amino-acid*^ are the bricks with which tissue protein is built and replaced, and the more closely the amino-acid make-up of a protein resembles that of the tissues, the greater is its value. The efficiency with which tissue protein can be replaced by food protein is termed "the biological value" of the food protein.

Another factor to be considered in assessing the value of the proteins of a food" stuff is their digestibility. In general, proteins derived from vegetable foods are of less value to the body than those derived from animal foods. It may be difficult to find a combination of vegetable proteins which can support growth and lay the foundations of healthy and vigorous manhood and womanhood as effectively as a mixture of vegetable and animal proteins. Some animal protein is essential during growth, pregnancy and lactation and it is desirable that in the growing periods it should form a, good proportion of the total protein. This proportion may with advantage be *one-third*; preferably it should not be less than *one-fifth*. The best source of animal protein for growing children is milk derived from the cow or other species. It must be emphasised that skimmed milk is as rich in good protein as whole milk, and buttermilk of good quality is also a useful source.

Diets for growing children which do not contain a fair proportion of animal protein cannot be regarded as satisfactory. In devising "cheap balanced diets" in In4ia; the inclusion of animal protein in adequate amount is the point which presents the greatest difficulty.

Data about the biological value of a number of proteins are given in Appendix I.

Fat

Like protein, fat is a necessary ingredient of a diet. The optimum or adequate quantities of fat that should be included in a well-balanced diet, however, are not known with any degree of certainty. It is probably desirable to * have a daily intake of about 45 to 60 grammes (|| to 2 ounces) of fat for an adult, of which about one-third is derived from animal sources. Surveys of diets consumed in different parts of India show that most diets are low in fat.

Fat is of value to the body in a number of ways, and a diet low in animal fat is often deficient in certain important vitamins of the fat-soluble group, particularly vitamin A. Vitamin A is present only in foods derived from animal 'origin; it is not present as such in the vegetable kingdom, where a precursor of it exists in carotene. Animal fats, such as butter or ghee, contain vitamin A but when they are adulterated with vegetable oils or with "vanaspati", the vitamin A content of such samples will get. further diminished. There is one vegetable oil which is very rich in vitamin A activity, viz., red palm oil, which is obtained from the fruit of the palm Elaeis guineensis grown in West Africa, Malaya and Burma. "Vanaspati", now getting popular in India as a cooking medium, is a hydrogenated, vegetable oil, or often a mixture of vegetable oils hydrogenated to an extent* calculated to give a semi-solid consistency at room temperature. It does not normally contain vitamins. Material sold under the caption "with added vitamins" should contain 700 I.U. vitamin A per ounce.

Apart from the oils and fats which are consumed as such and which are for the most part pure fats, the following foodstuffs are mong those rich in fat: oilseeds and nuts, soya bean and avocado pear. Cereals, pulses and vegetables contain fat only in extremely small amounts.

Fat is a concentrated source of energy; as fuel, it supplies per unit weight more than double the energy furnished by either protein or carbohydrate.

Carbohydrates

Carbohydrates are a class of substances which include glucose, cane sugar, milk sugar, starch, etc., They may be considered as the body's chief source of energy. Grain foods and root vegetables are largely composed of starch; cane sugar and glucose are hundred per cent, carbohydrates. The carbohydrates are a necessary constituent of a diet, but when, as is commonly in India, they are present in excessive amounts, the diet becomes ill-balanced. In working out diet schedules, the requirements of protein, fat, vitamins and minerals should first be attended to; subsequently carbohydrate-rich foods can be included in sufficient quantities to fulfil energy requirements.

ENERGY REQUIREMENTS

This brings us to the question of energy requirements. Tt is well known that even when the body is at rest, it expends a certain amount of energy for essential functions such as respiration, circulation, secretion of urine, maintenance of body temperature, etc. The amount of energy thus expended when the body is at complete rest (both mentally and physically) is termed the Basal Metabolism. Race, age, sex, height, weight and state of nutrition of an individual are some of the factors which influence it. This basal metabolism for a given age, sex and size is used as the starting point for the calculation of the total energy requirement-of individuals. Manual work, light or heavy, calls for an additional supply of energy. The

energy needed for both basal metabolism and for muscular activity will have to* be supplied through food. In drawing up new diet schedules or in assessing the value of existing ones, the question is often posed whether greater importance should be attached to the question of sufficiency or quality or of both. Ensuring both sufficiency and quality is naturally obviously the most desirable. But where a choice has to-be restricted to only one, the question of enough food should take precedence over quality and other considerations. Once this prime necessity of sufficiency is satisfied, attention can then be bestowed on whether the diet satisfies protein* mineral and vitamiu requirements, etc. It is comparatively easy to decide the question whether enough food is being provided. If not so provided, it is legitimate to expect complaints about hunger. Unfortunately, experience has shown thaj human beings can adapt themselves, at a low level of vitality and with their powers impaired, to an insufficient ration, and scarcely realise that they are underfed. The nutrition worker in setting up standards of food requirements, ignores and justifiably too, the remarkable faculty of the body to adapt itself to mild degrees of starvation. He aims at not mere survival but virile manhood with all the faculties at a high level of working capacity.

Quantitative food requirements are usually estimated in terms of heat units—calories. A calorie is the unit of heat necessary to raise one kilogramme of water by one degree Centigrade. This physiological heat unit is different from the physical heat unit which i* one-thousandth of the physiological calorie. Wherever calQiie is mentioned in this Bulletin, it is only the physiological or the larger calbrie that is referred to. The energy value of a foodstuff can be determined by employing a complicated Bomb Calorimeter or more easily calculated from the analysis of protein, fat ard carbohydrate by multiplication with the usual physiological factors, namely 4*1, 9*3 and 4"1 respectively. But for practical purposes and ease of calculation, the decimal can be^omifted and the whole integers, 4,9 and 4 adopted. This is the basis of calculation employed in arriving at the calorific value given out in the Tables.

An Expert Commission of the League of Nations has drawn up the following statement about energy requirements:—*

- (a) An adult, male or female, living an ordinary everyday life in a temperate climate and not engaged in manual wo'k is taken as the basis on which the needs of other age-sp-oups are reckoned. An allowance of 2,400 calories netf per day is considered adequate to meet the requirements of such an individual.
- (b) The following supplements for muscular activity should be added to the basic requirements in (a):

Light work: up to 75 calories per hour of work.

Moderate work: up to 75-150 calories per hour of work. Hard work: up to 150-300 calories per hour of work.

Very hard work: up to 300 calories and upwards per hour of work.

In view of the somewhat lower basal metabolism of Indians, there may be justifiable reasons for reducing "basic" calorie requirements below the League of Nations Standards. The actual calorie allowances for Indians as adopted by the Nutrition Advisory Committee of the Indian Research Fund Association have been set out in the Table on Page 15.

^{*} TJie Problem of Nutrition, Volume II, Report on the 'Physiological Bases' of Nutrition, 1936.

 $t\ The\ term\ ''net\ calories''\ \ refers\ \ to\ the\ amount\ of\ energy\ available\ from\ the\ calorics\ \ actually\ assimilated.$

It is usual to assess the food requirements of women and children in terms of those of She average man, various co-efficients being applied to the different age and sex groups. The following scale of co-efficients may be considered accurate enough for practical nutrition work in India:

										Co-efficient
Adult male.		•	•	•	•		•			.*1'O
Adult female		•								.0*9
Adolescents—12 to 21 ye	ars.			•	•		· -,	•	•	1-0
Children—9 to 12 years.		•	•			•			•	.0*8
Children—7 to 9 years.				•	•		•			.0*7
Children—5 to 7 year*.		•			•	•			٠.	.0*6
Children—3 to 5 years.					•	•				.0*5
Children—1 to 3 years.		ı		•						.0*4

Calorie requirements of infants are dealt with on pages 23 and 24.

It must be emphasised that this scale is a somewhat arbitrary one. Physique, habits of life and other factors are *o variable in different areas that no one scale of energy requirements and co-efficients could be entirely suitable for application throughout the country. A somewhat higher scale of calorie requirement would perhaps be appropriate for North India, particularly during the winter months. The requirements of a woman have been marked lower as compared to a man of corresponding age. During pregnancy and lactation, however, the needs of a woman*may equal or even exceed those of a man because of the additional requirements needed to nourish a child in the womb or at breast. (See also page 15.)

With the help of the Tables in the Bulletin, the calorie content of diets can be worked out and compared with requirements as suggested; or conversely, diet schedules yielding approximately the right numb* of calories can be constructed. In dealing with a group of mixed age and sex composition, the number of "consumption units" in the group or its "adult man-yalue" is first calculated. To illustrate by a simple example: A family consisting of father, mother and 3 children aged 10, 8, and 6 respectively has an "adult man-value" on the above scale of 4.0 and its minimum daily calorie requirement would be 2,400×4 or 9,600 calories. If it is necessary to draw up a diet-schedule for the family, food supplying roughly 9,600 calories should be included in the schedule. Suppose, analysis of the existing diet of the family indicates that total intake per day is below this level, attempts should be made to make good the deficiency.

Sound commonsense must be exercised in drawing up either new diet schedules, or in assessing the adequacy of existing ones. It is safer to err on the side of excess by 100 to 200 calories to allow for waste of all kinds, including the inevitable "leakage" of food which occurs in large institutions. Standards of calorie requirements are applicable only to reasonably large numbers and not to individuals. The relation between calorie requirements and such factors as work, activity and climate should be borne in mind.

* It might be felt that there is little danger that children or adults housed in charitable institutions under careful and well-meaning management sltould be underfed. But experience has shown that this is not infrequently the case in India. Superintendents of children's institutions should take particular care that *enough* food provided. The children themselves, often coming from homes in which they were half-starved, are not likely to complain of hunger in circumstances of *relative* abundance.

MINERAL SALTS.

There are indeed a large number of mineral elements that are present in the human body. Bones and teeth contain for the large part calcium, magnesium and phoi^horus; blood contains iron. It is estimated that an average man excretes

daily about 20 to 30 grammes of mineral alts, consisting mostly of chlorides, sulphates an I phosphates of sodium, potassium, ma^nesi m and calcium us well as ammonium salts derived from protein metabolism. This output must be made good by intake; ii thz case of the growing body, provision must be made for additional amounts necessary for storage as a constituent of the newly formed substances. The mineral salts needed fo • the body are invested through fo ds tuffs. Of these, the salts of calcium, iron and phosphorus play a prominent role in nutrition. It is probable that these are the elements which are most likely to be insufficiently supplied by average human diets and hence in giving out the analyses of foodstuffs in the Tables, attention was directed to only these three mineral elements, viz., calcium, phosphorus and iron. There are a number of other elements needed by the body but as their importance in practical nutrition is somewhat less pronounced, they have been left out of consideration both in the text and in the Tables. There is, however, one element, iodine, which has been the subject of considerable study; the special problem of iodine deficiency in endemic zones of goitre is outside the scope of this Bulletin. In general, it may be assumed that if the diet is reasonably varied and well-balanced with respect to proteins, fats, carbohydrates and vitamins, it will supply enough of the mineral requirements.

Calcium

Calcium is found abundantly in milk (including skimmed milk and buttermilk), cheese and green leafy vegetables. Of the leafy vegetables, amaranth, fenugreek and drumstick leaves are particularly rich in calcium. Cereals which constitute a major portion of the average Indian diet contain fair amounts of this element. Rice is an exception in that it is *xtremely deficient in calcium and there is evidence that insufficiency of calcium is one of ''themost important defects of the rice-eater's diet. Children need relatively more calcium and other minerals than adults, to meet the needs of thu growing bones. Expectant and nursing mothers 'require a large intake of calcium. A healthy breast-fed baby of three months contains a great deal of calcium in its bones, all of which has been drawn from its mother's blood and milk. If the mother's diet during this period were deficient in calcium, then the calcium present in her bones is drawn upon, and her health and probably that of the child will suffer. Since there is this enormous drain of calcium during *frfignancy and lactation, adequate supplies are essential. A large intake of milk is, therefore, recommended during this period.

The usual text book figures for calcium requirements are 0-68 g. a day for adults and 1*0 g. for children. These figures allow a fifty per cent "margin of safety". These standards are not materially different from those fixed by the Nutrition Advisory Committee of the Indian Research Fund Association if allowance is made for the fact that a part of calcium in dietaries based on cereals is apt to be lost in the form of phytin. Indian diets, particularly diets based on milled rice, may often supply 0-2 g. or less of calcium daily. This intake is definitely too small and needs augmentation. The habit of chewing betel leaves smeared with slaked lime (calcium hydroxide), which is fairly common throughout India and particularly amon^ the poorer classes, naturally increases the intake of calcium. Calcium ingested in this manner is utilised by the human body. It is hard to conceive of a riiDre inexpensive means of ensuring some calcium intake. Possibly for the same reason expectant and nursing mothers in India, especially among the poorer groups of the pouplation, resort to betel chewing about half a dozen times or more a day.

Phosphorus

Next in importance to calcium is phosphorus. The metabolism of calcium is closely related with that of phosphorus; most of the calcium that is deposited in the body either in the bones or teeth is as calcium phosphate. It is usually stated

that about one gramme or more of phosphorus daily should be supplied by the diet. Cereals arfd pulses are fairly rich in phosphorus. Rice, unlike in its calcium content, is fairly rich in phosphorus and thus conforms to the familiar characteristic of cereals in general. Considerable loss of this element occurs during'the washing, an invariable practice with housewives, and cooking of rice. Nuts and oilseeds are as rich in this element as cereals and pulses. A large part of the phosphorus present in cereals, pulses and nuts is in combination as phytin; 40—60 per cent, of phytin phosphorus is not available to the human body. Milk contains more calcium than phosphorus, but its phophorus content is not inconsiderable. Phosphorus deficiency is rarely encountered in diet surveys in India; this is because the diets consumed by the poorer section of the population are overweighted with cereals. It may be stated confidently that ensuring adequate supplies of calcifcm is a more difficult task than ensuring; an adequacy of phosphorus in Indian diets.

Iron

The amount of iron present in the body is small, but It has a very important function to perform. Haemoglobin, the red pigment of blood, a most important physiological substance which transports oxygen from the lungs to the tissues and carbon dioxide from tissues to lungs contains iron as an essential constituent of its molecule. Iron is essential for blood formation. When destruction and loss of blood corpuscles are taking place as in chronic malaria or hookworm infection, iron requirements are increased.

It is suggested that a well-balanced diet for a growing child or an adult should contain about 20 to 30 ings, of iron. This figure gives a "margin of safety' and allows for the possibility that the iron content of foods in certain parts of India may be lower than that of the foods analysed in the Coonoor Laboratories. The iron in certain foods is less "available"— $Le._9$ less* well assimilated than the iron in others. A fairly high percentage of the iron in cereals, pulses and meat, for example, is "available", but a lower percentage of the iron in vegetables. If, however, total iron intake from all foods present in the diet exceeds 20 to 30 mgs. per day, it is probable that sufficient iron will be assimilated.

In the treatment of certain forms of anaemia, iron medication is more effective than the consumption of a diet containing abundant iron-rich foods. For the prevention of anaemia, however, an iron-rich diet is valuable. Pregnant women are particularly prone to suffer from anaemia.

Other Elements

Besides calcium, phosphorus and iron, a large number of elements is needed for normal nutrition. They are: sodium, potassium, magnesium, manganese, cobalt, copper, zinc, chlorine, sulphur, etc. It is not necessary to go into the details of their requirements and their chief sources of supply through dietary means. It w reasonable to suppose that they will be supplied in adequate amounts if the requirements of the principal elements, calcium, phosphorus and jron, are satisfied through diet alone. It is only in the case of sodium and chlorine, a non-food dietary source of supply is resorted to in the form of common salt. The amount of sodium chloride which is ordinarily added to food as a condiment is so large that the amounts of sodium and chlorine present in foodstuffs have little practical significance. But when there is profuse perspiration, as often happens in many places in India, it is advantageous to replace this loss of sodium chloride through sweat either by taking a little extra salt with the drinking water or by adding a little extra salt to the food.

"Roughage" is generally understood to be the indigestible carbohydrates mostly cellulose and hemi-celluloses present in foods. It is also called "crude fibre" and is left unchanged by the digestive juices. Though contributing little to the

nutritive value of foods, the presence of roughage in the diet as a whole is favourableto the mechanics of digestion. It is stated to stimulate the contraction of the muscular walls of the digestive organs and to counteract the tendency to constipation. There is comparatively little roughage in cereals, root vegetables, nuts and oilseeds,, and flesh foods; vegetables, particularly the leafy ones, fruits and condiments and spices are comparatively richer in this respect.

VITAMINS

Vitamins are organic compounds present in minute amounts in fresh, natural, foodstuffs which are essential for health and well-being. They are needed in such small amounts that the are considered to function as catalysts. They are commonly named by the letters of the alphabet; they are also referred to by the major functions they perform like, anti-xerophthalmic, anti-beriberi, anti-scorbutic, anti-rachitic, etc., vitamins. They are broadly divided into two groups based on* their solubility, as water-soluble and fat-soluble. Vitamins A, D, E and K belong to tnfr fat-soluble group, and B complex and G to the group of water-soluble vitamins. In the brief treatment of vitamins in the succeeding pages, the alphabetical order is followed and not the classification based on their solubility.

Vitamin A

Vitamin A is present in some animal fats like butter and ghee, in whole milk, curds, egg volk, liver, fish, etc. Its richest known natural source is liver oil of certain fish, like cod, halibut, shark and saw-fish. Vitamin A is not present as such in the vegetable kingdom where 3L precursor of it exists in carotene. The pigment, carotene, v;as first isolated froni carrots and hence this name. While vegetable foods do not contain vitamin A, they possess vitamin A activity because the carotene present in them is capable of fulfilling the physiological functions of vitamin A in the tody. It is for this reason that carotene is often referred to as pro-vitamin A. Theoretically speaking, one molecule of p-carotene is capable of yielding two molecules of vitamin A. But in practice this does not happen. While vitamin A is easily assimilable, the physiological utilisation of carotene is dependent on a large num-This does not mean that carotene is *not* assimilable; in fact, most of the vitamin A requirement of Indians is met by the consumption of a suitable vegetable diet. Leafy vegetables, such as spinach, amaranth leaves, coriander leaves, drumstick leaves and cabbage, and ripe fruits such as mangoes, papayya, tomato, oranges, etc., are rich in carotene. Root vegetables are poor in this respect, the only exception being carrots which are a good source of carotene.

It may be mentioned that the daily requirements of an adult are in the neighbourhood of 3,000—4,000 International Units of Vitamin A derived either from foods of animal or of vegetable origin. The requirements are greater in pregnancy and lactation and for growing children. Animal foods rich in Vitamin A are, however, many Limes more expensive; the easiest and cheapest way of ensuring a sufficiency of vitamin A is to increase the intake of green-leafy vegetables. Three to four ounces a day of the common leafy vegetables will furnish more than an adult's requirements of this vitamin. The needs of children can also be covered in the same way. But in the case of infants and young children, and sickly and malnourished children of all ages who cannot properly digest the fibrous leafy vegetables, it is advisable to supply vitamin A in the form cf a daily dose of cod or shark liver oil or medicinal concentrates manufactured from such fish liver oils. Field investigations in India have shown that vitamin A deficiency is the single factor responsible for a large* number of nutritional deficiency diseases and that the intake of cod or shark liver oil increases nutritive value of the average Indian diet.

It is relevant at this stage to say a few words about the shark liver oil industry in India. Ountil recently, the only sources of vitamin A for treatment of defic^ncy cases were the Norweigian cod liver oil and concentrates manufactured from halibut liver oil. But during the recent war, the imports of cod liver oil witere completely stopped. The cutting off of such supplies of a valuable commodity would have had disastrous effects on the general health of India, had it not been for the fact that alternative sources were easily available. The shark and saw-fish cftat are, found in Indian coastal waters yield a liver oil which is often more potent in vitamin A than the imported cod liver oil. It is somewhat strange that the shark and saw-fish are found extensively in the coastal waters of the Arabian Sea and Indian Ocean, extending from Karachi down to Gape Gomorin while they are somewhat rare along the eastern coast.

A flourishing industry for the manufacture of cod liver oil substitutes has now been developed. In most hospitals and boarding schools in India, a cod liver oil substitute based on shark and saw-fish liver oil is being extensively administered Vitamin A has now been synthesized and the synthetic product has replaced the vitamin obtained from natural sources in therapy and in the 'fortification of foods.

The vitamin A activity of any given foodstuff is variable, depending on a number of factors. That of milk and butter, for example, fluctuates according to the diet of the animal from which they are derived. It has been observed in Europe that "summer" milk, obtained from cows fed on succulent green grass rich in carotene, contains more vitamin A than "winter" milk. Such a difference is not likely to exist in a tropical country like India. The vitamin A content of different samples of butter may vary from 600 to 6,000 International > Units or morC^per 100 grammes. In the manufacture of ghee from butter by the usual methods adopted in Indian homes, some 25 per cent, of the vitamin A originally present may be destroyed. Prolonged heating of ghee in an open pan causes serious destruction of vitamin A. Cow ghee is richer in vitamin A than buffalo ghee. While buffalo ghee is practically* devoid of carotene, cow ghee contains fair amounts of carotene which adds to itdf vitamin A activity. This enhancement of vitamin A activity in cow ghee thrpugh carotene may be to the tune of thirty per cent. Genuine cow ghee may contain about 20 to 25 International Units of Vitamin A activity per gramme while that of buffalo ghee 8 to 10 I.U./g.

-Vitamin A is somewhat more stable than carotene. Light, particularly the ultraviolet rays, has a destructive influence on carotene. A good rough indication of the carotene content of leafy vegetables is their greenness. Green and fresh vegetables contain invariably more carotene than stale ones. Ordinary cooking of vegetables causes only egligible losses in carotene content. It will be seen in the Tables that for a number of foods, individual values for vitamin A and carotene are not given but a range. In devising diets, a figfire lying midway between the two extremes may be used. In the absence of information about the vitamin A activity of a vegetable food, it may not be wrong to assume that most green leafy vegetables are richly endowed in this respect, while other vegetables, cereals, pulses, etc. are less important sources of carotene. Most ripe fruits are fairly rich in carotene.

Vitamin A deficiency is very common in India, perhaps more in the South than in the North, and care must be taken to ensure an adequate supply of this vitaihin.

T/ie B Vitamins

A whole group of vitamins is included under this head. Vitamin Bj, or "thiamine", as it is more popularly called now, has often been referred to as the "antiberiberi" or "anti-neuritic" vitamin. It is an important member of this group and the first of the vitamins to be discovered. Its lack or deficiency in the food gives rise to a disease called beriberi, wherein there is partial or complete paralysis pf the limbs, due to degeneration of the nerves, often accompanied by dropsy and by weakness of heart muscle leading to heart failure. Thiamine is also concerned in the proper utilisation of carbohydrates; in the absence of adequate amounts of thiamine, full utilisation of sugars and starches for energy needs is retarded. Yeast and the outer layers of cereals removed on milling, like rice find wheat bran, have a high thiamine content. The richest sources of thiamine among ordinary foods are unmilled cereals, pulses and nuts, particularly groundnut. Meat, fish, eggs, vegetables, fruits and milk are in general poor in thiamine. A diet largely composed of raw milled rice contains insufficient thiamine and may cause beriberi, vChich is a common disease in certain parts of India, as in the Northern Circars districts of the Andhra State. Parboiled rice, even when highly milled, usually contains enough thiamine to prevent beriberi. A rice grain consists of three principal parts: germ, pericarp or outer layer and endosperm or inner layer. During milling of the raw rice, the thiamine mostly present in the germ and outer layer goes out along with the bran and the woody husk, while the highly polished white rice, pleasing both to the eye and to the palate, contains negligible amounts of thiamine. Whereas, during parboiling, a process in which paddy is subjected to steaming under slight pressure till the woody husk splits, thiamine and other nutritious elements present in the outer layer and germ diffuse through the entire mass of the grain, so much so the parboiled grain, even though milled like raw rice, still contains enough thiamine to prevent beriberi. It is for this reason, parboiled milled rice is superior to raw mill / Th.*._ '

The washing and cooking of rice cause a considerable loss of thiamine, nicotinic acid, phosphorus and other important dietary constituents. This loss is greater in raw than in parboiled iice, for reasons mentioned above. Rice which is mouldy and weevil-infested is likely to be subjected to greater washing. Such poor quality rice ia often consumed by the very poor whose diet contains only small quantities of foods other than rice, and who are in the greatest need of the elements lost in washing. It is the first washing which causes most of the loss, so that there is not much to be gained by reducing the number of washings. The cooking of rice may cause further losses if too much water is used and the excess cooking water thrown away.

The thiamine requirements of an individual are dependent on a number of factors chiefly the composition of the diet. The amounts of carbohydrate and fat consumed are of importance; the more the carbohydrate, the greater is the need of this vitamin, while fat has what is termed a "vitamin B_t sparing" action. Requirements are increased by heavy work or strenuous exercise, and also during pregnancy and lactation. In a very rough way, the thiamine needs of school children and adults living on ordinary diets in normal circumstances may be estimated at about 330 International Units or one milligramme a day. It is not difficult to ensure that a diet contains enough of this vitamin. Diets based on whole wheat, any of the millets, raw home-pounded rice or parboiled rice (home-pounded or machine milled) usually supply thiamine in rufficient amounts. The greatest danger of hiamine deficiency arises when highly milled raw rice is consumed as the main ingredient in a diet containing other foods such as pulses in negligible amounts. But even when this kind of rice is eaten, there is not much danger of beriberi if 3 ozs. or thereabouts of pulses are taken daily. The smaller the supply of noncereal foods, the more important it becomes to avoid a preponderance of milled raw rice in the diets. An easy and effective means of preventing thiamine deficiency is to have recourse either to parboiled rice or undermilled raw rice or by a partial replacement of the highly milled raw rice by any of the millets to the extent of about 4 ozs.

There are several other members of the B group of vitamins. They are sometimes referred to as the "B₂ Complex". Recent investigations have shown thit some of them are of great importance in human nutrition. They include nicotinic acid (also called niacin), riboflavin, pantothenic acid, pyridoxin, folic acid and vitamin Soreness of the angles of the mouth and the tongue, ocular lesions, like corneal opacities, corneal ulcers and photophobia, and detmatitis are caused by a lack or deficiency of riboflavin in the diet. Pellagra and nutritional diarrhoeas are due to nicotinic gcid deficiency. "Burning feet" associated with ariboflavinosis has been reported to have been cured by administration of calcium panto thenate. There are besides other factors which are not at present considered necessary in human nutrition. Figures for nicotinic acid and riboflavin for a number of foodstuffs are included in the Table. In general, whole cereals, pulses and nuts are fairly good sources of most members of this group. Milled cereals, and in particular raw milled rice, are poorly endowed and the same is true of vegetables and fruits, in general. Yeast, milk-products (including skimmed milk, buttermilk, curds and cheese), lean-meat, liver and eggs are among the best sources of this group of vitamins. There is good evidence that poor Indian diets, which contain little milk or meat, are often very deficient in the B₂ group of vitamins. •

"Soreness" of the angles of the mouth and of the tongue—"angular stomatitis"—isinown to be caused by a deficiency of vitamins belonging to the B₂ complex. It is often seen in those whose diet consists largely of milled rice. Rapid cure follows the daily consumption of half to one ounce of dried yeast, or half to one pint of milk or 2 to 3 eggs. An all-round improvement of the diet in the direction illustrated by the diagram facing page 18 is also very effective \dot{m} treatment.

Vitamin C

Vitamin C or ascorbic acid is the vitamin that prevents scurvy. It is usually found in fresh fruits and vegetables, particularly the green leafy varieties. Of all the vitamins, vitamin C is the one vitamin that is most easily susceptible to destruction by atmospheric oxidation. One of its characteristic properties'is its intense reducing action and hence the tendency to rapidly oxidise in air. It is for this reason that when vegetables get dry and staie, most of the vitamin C originally present is destroyed.

Fresh meat and milk contain a little vitamin C. Pulses and cereal grains in the dry state do not normally contain vitamin C. When, however, they are allowed to sprout or germinate, the vitamin is formed in the grain and in the growing sprouts. About 85 per cent, of the vitamin is present in the grain and only 15 per cent in the shoot. Sprouting is a simple process* wherein the grains are, after a preliminary soaking in water for about 24 hours, spread out on damp earth or damp blanket and covered over with a moist cloth. In 2 or 3 days, the grains will have germinated with half to three quarters of an inch of sprout. The germinated grain should be consumed either raw or after cooking for a minimum period. Usually during prolonged drought and consequent famine, scurvy is about the first deficiency disease to make its appearance. It would be difficult to provide adequate amounts of fruits and fresh vegetables in such areas. Sprouted grains may be used then as a cheap and easily available source of vitamin C. The one commonly employed is sprouted Bengal gram {deer arietinum}. Its efficacy in preventing scurvy has been more than once demonstrated in famine areas in India. Sprouted Bengal gram is by no means the best source of vitamin C among sprouted grains; sprouted mun\$ (Phaseolus radiatus) or green gram is about three times more potent in vitamin C than sprouted Bengal gram.

There is one very cheap and common fruit, namely amla or nellikai (*Phyllanthus emblica, Linn*), which is very rich in vitamin C—which, indeed is one of the richest natural sources of the vitamin. Amla grows abundantly in all Indian forests, and is obtainable in almost unlimited quantities from January to April. The fresh juice contains nearly twenty times as much vitamin G as orange juice, and a single fruit is equivalent in vitamin G content to one or two oranges.

The heating or drying of fresh fruits or vegetables usually leads to the destruction of most or all of the vitamin G originally present. Amla is exceptional among fruits because of its very high initial vitamin C content, because it contains subtances which partially protect the vitamin from destruction on heating and drying, and because its juice is very strongly acid. Acidity has a protective action on vitamin G. Hence it is possible to have amla preparations potent in vitamin G.

'Scurvy is the drastic consequence of prolonged vitamin G deficiency. Nowadays the extreme manifestations of such total deficiency are rarely encountered, but there are many "prescorbutic" or "sub-clinical" conditions for which a partial deficiency of vitamin G is held responsible. Bleeding gums and mucous membranes, petechial haemorrhages, retarded wound-healing, etc., are manifestations of such partial deficiency.

A wfll-balanced diet for school children and adult should contain some 30-50 mgs. of vitamin G per day. Vitamin G is sensitive to heat, and loss occurs on cooking, particularly if cooking is prolonged. Nevertheless, the inclusion of a few ounces of fresh fruit and leafy and other vegetables in a diet will ensure that its vitamin G content is satisfactory. In the case of infants fed on boiled fresh milk or reconstituted dried milk, special attention to vitamin C requirements is necessary. These can be met by giving fruit juice in small quantities.

Vitamin D

Vitamin D, the vitamiii which prevents rickets and osteomalacia, is found in liver and liver oils, egg yolk, and in milk and milk fat (e.g., ghee) obtained from anihial? fed on green pastures and exposed to sunlight. Fish liver oil is its richest natural source. Rickets and osteomalacia are both serious diseases, the former affecting children and the latter adults, mainly women. They cause deformities of bones, often gross deformities, because the deposition of lime salts in the bones, a process in which vitamin D plays an important part, docs not proceed normally in absence of vitamin D.

Vitamin D is also formed in the skin by the action of sunlight which transforms a substance normally present there—a 'precursor' of vitamin D— into vitamin D itself. Hence rickets is particularly apt to occur in infants living in dark houses while osteomalacia is often found in the North among women who observe purdah. Probably minor degrees of rickets are more common in infants and young children throughout India-than is generally believed. Often the cheapest way of obtaining this vitamin is by exposure of the body to sunlight. Medicinal preparations of vitamin D cost money. The sun is free. There is a close connection between vitamin D and calcium an I phosphorus metabolism. When little vitamin D is obtained, a id at the same time insufficient calcium is present in the diet, the danger of rickets and qsteomalacia is increased. This is an additional reason why attention must be given to calcium intake. Osteomalacia, manifesting itself in the first instance by pain in the bones, usually starts during pregnancy, when demands for calcium are raised<4>ecause of the needs of the growing foetus in the womb. After the child is born the disease may regress for a time, but it tends to recur in more severe form in succeeding pregnancies. Ultimately the bones of the unfortunate victim may become so bent that she is unable to stand upright, and distortion of the pelvis

may make it impossible for child birth to take place normally. A good supply of ihis ^vitamin during pregnancy benefits the mother and helps to ensure the satisfactory future development of the child.

Shark and saw-fish liver oils usually contain a little more vitamin D than cod liver oil. If, however, groundnut oil, which contains no vitamin D, is added to the former to produce a preparation equivalent to cod liver oil in vitamin A content, the amount of vitamin D in the mixture may be below that normally present in cod liver oil. It is, however, easy to bring substitutes up to cod liver oil standard as regards vitamin D by the addition of pure vitamin D ("calciferol") in suitable equantities. Calciferol and preparations containing calciferol can be mknufactured, and because of their high anti-rachitic potency, are of great value in the treatment of rickets and osteomalacia. Calciferol is synthetic vitamin D and differs somewhat in chemical structure and composition from natural vitamin D obtained from foodstuffs or by the exposure of the skin to sunlight. In human nutrition, both (synthetic and natural vitamin D) exert a like action. About 400 to 800 International Units are stated to be the requirements of a child. The requirements for adults may be less, but not known with any degree of certainty., One gramme of the vitamin contains 40,000,000 International Units; it is easily apparant what small quantities are needed.

There remain besides vitamins E and K many less well-known vitamins. They are not discussed here as they are not considered sufficiently important for practical nutrition work in India. The role of some newly discovered factors in human nutrition is still a moot problem.

THE EFFECT OF COOKING ON NUTRITIVE VALUE

Nearly all foodstuffs, with the exception of fruit* and some leafy vegetables used either as salads or in chutneys, are consumed in tfie cooked state. The assessment of the nutritive value of any foodstuff should, strictly speaking, be made on the processed material, a state in which it is consumed and not in its raw state. But this presents insuperable difficulties as culinary practice varies from province to province, district to district and even house to house. Further, knowledge on the subject is rather meagre, and hence only broad details are given.

Cooking involves one of the following processes: Wet methods of treatment like boiling and steaming, and dry methods of treatment like frying, roasting and baking. The wet methods of cooking lead to greater losses than the dry methods. The effect of heating and cooking on the nutritive value of foodstuffs, is on the whole, less pronounced than is generally believed.

Ordinary cooking causes little loss of protein, fat and carbohydrates in cereals, pulses and meat; in vegetables, however, there may be some protein lost on boiling in water, particularly when salt is used in cooking and the cooking 'liquor rejected. There is considerable loss of mineral salts in this process due to leaching; sodium, potassium and chlorine ions, somewhat relatively less important in practical nutrition, show the greatest loss. It is, however, advisable to use the minimum amount of Water and to utilise the cooking liquor in either soups or gravies. Root vegetables do not suffer much loss by either the wet or dry methods of cooking. The skin of niost root vegetables is impermeable and hence it is preferable to boil them with their skins. It is, however, a more common practice with the housewife to peel and cut them before boiling. The smaller the piece the greater will be the surface area exposed and consequently losses due to leaching will be greater. But in soup making, this will not make any difference. Steaming of vegetables is even preferable as practically no losses due to leaching occur.

Even during preliminary treatment of washing, prior to cooking, a certain amount of minerals is lost. It is a common practice for the housewife to wash rice three or four times with large amounts of water before cooking. Considerable amounts of minerals pass into the water, the proportion removed being greater than that removed by the subsequent cooking. Rice of poor commercial quality naturally tends to require more washing than rice of good quality, and the loss of mineral matter and B vitamins from such rice may be great. Contrary to the general belief, rice "conjee" (surplus liquor strained away after cooking rice) is not rich in elements contained in the original rice, and should not be regarded as being of high nutritive value.

The vitamins, particularly the members of the water-soluble group, show greater loss during cooking than the mineral salts. Vitamin A, carotene (provitamin A) and vitamin B_x survive for the most part during cooking by ordinary methods. But the addition of soda (sodium bicarbonate) to cooking water either for the preservation of colour or to facilitate cooking leads to far greater losses. Conversely, a substance like tamarind with high acidity, has, when added to cooking water, a preservative effective on the vitamins. It is vitamin C that suffers maximum loss during cooking. Even here, the loss on cooking is smaller than the loss due to leaching during boiling in water. A similar loss in vitamin C takes place during the interval between cooking and actuaLconsumption. It is very rarely a dish is consumed immediately after cooking. It is for this reason it is desirable to include some raw fruit or vegetable in the diet.

Frying does not lead to much change in the nutritive value of foodstuffs, whether they are fried in deep or shallow fat. If ghee or butter is used for frying, there is destruction of the vitamin A originally present in the cooking medium. The boiling of milk leads to destruction of a major portion of its vitamin C and somewhat less of its vitamin B_{19} while vitamin A, carotene, vitamin D, riboflavin and nicotinic acid are not seriously affeoted. Eggs suffer little or no loss of vitamins A, B_t and D, riboflavin and nicotinic acid during cooking.

Thus far, the deleterious effects of cooking have been considered. Cooking is not without some beneficial effects. Cooking improves palatability and digestibility of foodstuffs in general. The biological value of proteins is oftentimes enhanced by cooking, partly through making the proteins more easily assimilable and partly through destruction of such factors as trypsin inhitytors which impede the proper digestion and utilisation of proteins. Trypsin inhibitors are known to be present in some pulses and legumes, principally soya bean. Biotin, one of the vitamins of the B group, is present in fair amounts in egg yolk; but, its usefulness is prevented by avidin, present in egg white, which possesses considerable biotin-inactivating properties. Cooking destroys completely this biotin-destroying activity of avidin. Finally, cooking kills disease-bearing germs present in foodstuffs.

DIETARY ALLOWANCES

^ It will be appropriate now to consider the daily dietary allowances in terms of essential nutrients. Table I given below was prepared in November, 1944 by the Nutrition Advisory Committee of the Indian Research Fund Association, now Indian Council of Medical Research. The figures are based on the knowledge obtained by the work done in India and abroad. There are quite a few gaps in our knowledge which, it is hoped, will be filled in the near future. The Table and notes are quoted in full from the Nutrition Advisory Committee Report.

TABLE I.—Recommended Daily Allowances of calories and some essential nutrients

		Net calories	Proteins	Fats	Ca. (Gal- cium)	Fc. (Iron)	Vit.A I.U.	Thia- roizi (Vit. B₁)	Vit. B. com- plcx	Ascor- bic acid	Vit. D.
Mon (55Va	Tinks on and means	2400	82		g.	ing.		*		mg.	I.U
Man (55Kg. or 120 lbs.)	Light or sedentary work.	2400	82	l	r	r	r	ì	울	ſ	
	Moderate work .	3000	82	[[] [[[, 1	1	
	Very hard work	3600	82		10]			3	ł	<u> </u>
Woman (45 Kg. or 100 lbs.).	Light or sedentary work.	2100	67	(4) following the table		20	3000	10	Footnote (10) following the table	50	
	Moderate work .	2500	67	भु	}) to	4000	1 to 20	(00)	}	ĺ
	Very hard work .	3000	67				<u> </u>	<u> </u>	at .	1	f400
	Pregnancy .	2100	101	offic.	1-5	1	!	}	ğ		to 800
	Lactation .	2700	112	€.	20	1 1		į	See F	[1000
Children	Under 1 year .	100/Kg.	3-5/Kg.		,	,	,	,	on	,	ļ
	1 to 3 years .	900	3-5/Kg.	Note	1 1	1)	1		1 .	
	3 to 5 years .	1200	3-5/Kg.	š	'} [<u> </u>		ነ			٦
	5 to 7 years	1400	3.0/Kg.	' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	1.0	i "s	3000	0-5	- 1	30	i 400
	7 to 9 years .	1700	ָי <u>י</u>		d to	₹.[]	┫ to	{ _{to} ∣	1	վ to	1 to
	9 to 12 years	2000	J-2-5/Kg.		1-5	1 to 30		11-0		50	800
Adolescents	12 to 15 years .	2400 .	;],30]	j ¦		,	and	١
	15 to 21 years .	2400	2-0/Kg.				[į		over.	1

. <u>WA The estimates of the protein requirements of children</u>, and adolescents are given in terms of grammes per Kilogram because adequate data about average weight in the various age groups were not available to the Sub^Committee.

NOTES

- 1. The term 'net calories* means the energy available from the food actually assimilated.
- " 2. Additional calories for moderate and heavy work have been provided for, in accordance with the recommendations of the Technical Commission on Nutrition of the League of Nations Health Organization.
- _. 3. Proteins of animal origin are generally superior in biological value to vegetable proteins. It is, therefore, de-wwble that some animal proteins should be included in the diet. Various estimates have been made of the desirable protein of animal to vegetable proteins, e.g., 1:1,0-5:1 or less. These are, however, not based on a fully satisfactory scientific foundation. Some animal protein should, however, be included in the diet. The diet given in Table II contains about J^* Sma. of animal proteins equivalent to about 29 per cent, of the total protein.
- ⁴. Fats must be included in a balanced diet but there is no exact knowledge at present available of the quantity required; hence no figures have been included in the Table. Fats possess the advantage of yielding more than twice the energy obtained from carbohydrates or proteins. It is the general experience of nutrition workers that, even in a temperate climate, there is a tendency towards a higher consumption or fats in winter man in summer, A liberal consumption of fat, can be advocated on Se within that some of them act as vehicles for fat-soluble vitamins and thus may provide nutrients to the body in appreciable quantities.
- $L \cdot ^{\mathrm{Fi}} 5^{1} 5^{\mathrm{es}}$ carbohydrate requirements are not given in the Table. If the constften listed in the Table obtained from a variety of natural foodstuffs adequate amounts of carbohydrate will be obtained.
 - 6. Equivalents of 1 milligramme of various vitamins in International Units arc shown below :-

1-0 m	illigrar	nme B carotene				•	•	• = 1,666 I.U. Vitamin A.
] >0	»	Vitamin A				٠		3,300 I.U.
1 ''0	>>>	Thiamin hydrochloridft		,				$= 333 \text{ I.U. Vitamin } B_x.$
1.0	****	A						• - 20 I.U. Vitamin a
1.0	,, 	Calciforol	•	•	-	-		= 40,000 I.U. Vitamin D.

7. Vitamin A requirements met from animal foods, and by pro-vitamin A (carofinals) present in some foods of intake is necessary than bource of Ytamin A activity. The figure in the Table is intended to cover vitamin A requirements met a higher level source of supply. In Indian diets, particular from animal foods, and by pro-vitamin A (carofinals) pro-vitamin A indian foods a higher level source of Supply. In Indian diets, particular from animal foods, and by pro-vitamin A (carofinals) pro-vitamin A (car

- 8 Vitamin D is undoubtedly necessary for older children although no definite figure can be given at present. Ex posure to the ultraviolet component of sunlight leads to the formation of vitamin D in the skin and thus may supply a par of vitamin D requirement. No data are available about the contribution to vitamin D requirements from this source in tropical and subtropical countries.
- 9. The information about the availability of iron from different foodstuffs is incomplete. Hence a figure for total iron intake higher than the usually accepted standard is included in the Table.
- 10. The human requirements of riboflavin, nicotinic acid and other members of vitamin B, complex have not yet been placed on a fully satisfactory basis and hence are not included in the Table. These vitamins are, however, essential for human nutrition. A few quantitative estimates of requirements have been made* e.jg., from 2*2 U> 3-3 mgs. of riboflavin and 15 to 23 mgs. of nicotinic acid for adult men. Future research in India and elsewhere should be directed to placing this problem on a hrm scientific basis.
- 11. There are several other minerals which are essential in nutrition, e.g., iodine, magnesium, copper, manganese, etc. In gen* ral, if a diet is well balanced and is adequate in respect of other better known essential nutrient it can be assumed that it will supply such minerals in adequate quantities.
- 12. Allowance has been made for the unavailability of a certain proportion of most of the constituents in mixtures of foodstuffs, as also for the possibility of destruction through methods of preparation.

BALANCED DIET

The information given in the Table can be interpreted in terms of common foodstuffs, and has been done below.

The Table and the notes which follow are also quoted from the report of the Nutrition Advisory Committee already referred to.

TABLE II.—Composition of a Balanced Diet

(Adequate for the maintenance of good health)

											Oz.
Cereals.				•				•		·	.14
J? uſses	•	•	•	•	•	•	•		« •	«	3
Green leafy veg	etab	les.			•				•	•	.4
Root vegetables									•	•	.3
Other vegetable	S.	•		•	•			•	•	•	3
Fruits			•								3
Milk							-	•	•	•	.10
Sugar and jagge	ery.	,		•			-		•		.2
Vegetable oil, g	hee,	etc.									.2
Fish and meat.			•								3
Eggs			•					•	•	•	.1 egg

Cereals.—The type of the cereal forming the staple article of diet will vary according to locality. This variation will, however, cause little appreciable disturbance in the nutritive value of the diet, for the non-cereal portion of the diet as advocated provides most of the essential nutrients in requisite amounts.

^ Fats and oils.—The quantity of total fat in a diet made up according to the Table will be about 90 gms. Under the heading fats in the Table is included, the fat or oil used for cooking and flavouring the food. As much of this as possibel could be butter or ghee, if means permit.

Fish, meat and eggs.—These foodstuffs are excellent sources of proteins of high biological value and good sources of vitamins of the B₂ group. Egg' is rich in "vitamin A and is the only natural foodstuff, besides milk fat, supplying appreciable amounts of vitamin D.

Sugar and jaggery.—Sugar and related products are used mainly as sweetening agents. They thus increase the palatability of foods and also contribute to the energy value of the diet. Jaggery also adds to the mineral constituents of the diet.

• Condiments and spices.—These accessory foodstuffs are not included in the diet Table. Most of tl^em are used for flavouring foods. Some of them contribute in appreciable amounts essential nutrients even in the small quantities in which they are used. Their value in improving the palatability of the diet is to be particularly stressed, and as such their use in moderate quantities is desirable.

Milk and milk-products.—In Table II the requirement of an adult has been placed at 10 ounces per day. We are not satisfied with this low figure; it may* however, be taken as a practicable objective to be reached within a short period. When conditions improve, the figure for milk requirement will have to be increased, and brought in line with the commonly accepted standard of 20 ozs. per adult per day. It appears that in certain parts of the country such a figure has already been reached. The Committee feels that in future care should be taken to see that the level of intake in such areas is not lowered. During infancy and childhood the requirements of protective foodstuffs, particularly milk, are greater than those advocated for adults (Table II), e.g., nutrition workers recommend a daily allowance of about 40 ounces per child of 1 to 6 years. It is necessary to stress, therefore, that in considering the distribution of the available milk supply the needs of infants, growing children and pregnant and nursing women should receive a high priority.

Requirements of pregnant and nursing women.—During pregnancy and lactation, a woman needs more protein and minerals. The extra protein can be obtained by substitution of a part of the cereal portion of the diet by more milk, fish, meat and eggs, particularly milk, and in case of vegetarians by a further additional provision of milk. This would also ensure the necessary additional supply of mineral*.

INVESTIGATIONS OF DIETS AND IMPROVEMENT IN PRACTICE.

The information given in the last two sections should enable one to remedy the defects in the diets which may have come to light as the result of a survey. Such surveys are usually carried out by house to house visits in which information about food consumption, the number of inmates with their age and sex, monthly income of the family, etc., is collected. From these data one can derive the₀actual consumption of the' foodstuffs and calculate the intake of nutrients by a reference to the Tables. One can then proceed to suggest improvements in the diet. Attempts in this direction are likely to be limited by the income of the family, and it would be wise to effect a compromise by temporarily sacrificing the ideal to the necessity of taking the improvement economically possible. Fortunately in India a wide choice of cheap foodstuffs is available, a judicious use of which should greatly reduce the conditions of malnutrition.

A concrete example will illustrate the methods to be followed in improving diets and Rawing up satisfactory diet schedules. Let us suppose that the* daily diet

schedule of an institution, or of any group of people, works out as follows in amounts per consumption unit per day:—

TABLE III.—Composition of an Ill-balanced Did

					Ozs.					
Milled rice . •	•		•	•	15-0	Protein • •	•	•	•	38 gms*
Milk	٠.	•	•	•	1-0	Fat.				19gms.
Pulses (dhal arhar)			•	•	1-0	Carbohydrate		•		357 gms.
Brinjal . , .	•	•	•	•	1-0	Calories				1,750
Ladies finger .				•	0*50	Calcium .	•			0 ·16 gm.
Amaranth		•			0-25	Phosphorus	٠.			0 *60 gm.
Gingelly oil .	•	•	•	•	0-50	Iron • •	•	•	•	9-0 mg.
,						Vitamin A (Inte	rnatior	al Uni	ts)	500
						Vitamin B _x .	•	•		0-5 mg.
						Vitamin C				15*0 mg.

This diet is shown diagrammatically in the figure (the "Insufficient and Ill-balanced" diet).

By reference to the Tables which follow later, the composition of the ill-balanced diet can be worked out. Its chemical composition is given in columns 3 and 4 of Table III.

It is at once apparent that this diet is insufficient in quantity and that it fails to supply the necessary requirements of any of the food factors enumerated. Such a diet, it may bt remarked, is typical of diets consumed by millions in India.

An improvement is possible in this diet in almost every category of foodstuff. If means did allow, the foodstuffs included in Table II in quantities given there to make a well-balanced diet would be the best substitute. But it will be realised that items like milk, fruits and flesh foods, are expensive and beyond the means of many. In these circumstances it would be better if the question of cost was borne in mind while attempting any improvement in the diet. From the institutional point of view, therefore, the introduction of a second cereal, e.g., millets, increase in pulse and vegetables, particularly green leafy vegetables with proportionately small increase in milk and if no religious objections exist, the introduction of cheap flesh foods two to three times a week can serve the purpose of enhancing the nutritive value of the diet without adding a heavy burden of cost. The improved diet is given in Table IV, with the essential nutrients that can be derived from it in columns three and four and also illustrated in the diagram.

TABLE IV.—Composition of an Improved Diet

		Ozs.	
Rice • . • ' •		9	Protein • . • • 73 gms.
Millet, cumbu		5	Fat
Pulse	•	3	Carbohydrate 445 gms.
Non-leafy vegetables •		6	Calories 9,795
Green leafy vegetables .		8	Calcium 1 *5 gms.
Milk * . • •		4	Phosphorus 1 4 gms.
Fat and oil • •	•	2	Iron 60 mg.
Sugar or jaggery • • .	•	2	Vitamin A (International Units) . 5,000
7			Vitamin B_x (Milligrammes) . 1-5
			Vitamin C do PO

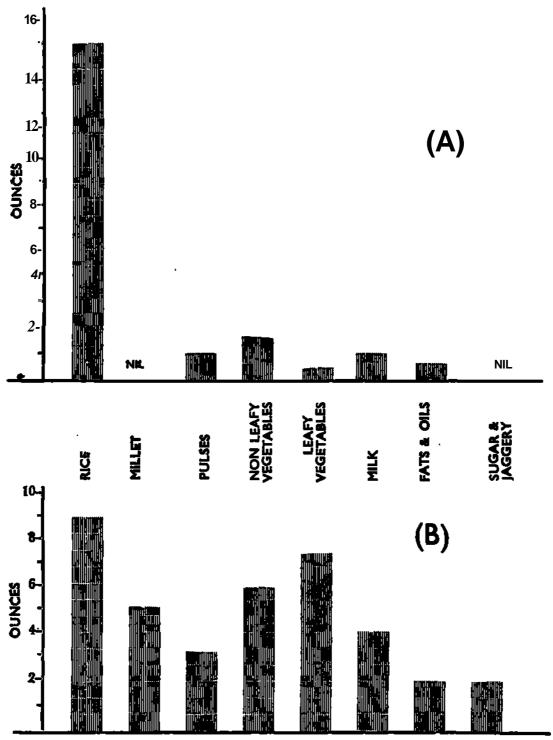


Fig. I Illustrating (A) insufficient and ill-balanced diet and (B) improved diet. For details see Tables III and IV.

It is understood that there will be several objections against this improved diet such as that the quantity of milk is too small, proportion of cereals still large, that mention of ghee under fats and oils is not made, etc. In making any comments on this diet, however, one must remember the limitations under which one has to work.

Well-balanced diets are in general more expensive than deficient ones. For example, the "Insufficient and Ill-balanced" diet shown in the diagram, which is largely composed of rice and contains very little milk, vegetables, or fruit, costs about Rs. 8 per adult per month; the "well-balanced" diet richer in milk and other foods, Rs. 15 ^o 18. The same diets would have cost Rs. 2-8-0 and Rs. 5 to 6 in pre-war cays. It is at this point, therefore, the nutrition vorker encounters the main difficulty. Those who suffer from under - and malnutrition usually cannot afford to purchase a satisfactory diet. Many residential institutions for children in India, for example, are very short of money, and have often to feed their boarders on Rs. 5 to 6 per head per month or a good deal less. Now it is difficult, in fact impossible, to supply a really satisfactory diet for such sums.

But even when poverty prevents the purchase of a diet which satisfies modern standards of nutrition, it is often possible to make effective improvements with little increase in cost. It is desirable that children should consume upwards of 8 ozs. of milk a day—8 ozs. being an amount bfclow that recommended as "optimum" by nutrition workers elsewhere. If available funds do not admit the addition of this quantity of whole milk, buttermilk or skimmed milk reconstituted from skimmed milkpowder which are considerably cheaper, may be supplied. Even a little milk is better than none. Careful experiments have shown that the giving of 8 ozs. of skimmed milk daily, to children fed on an average "ill-balanced" Indian diet results in an acceleration of growth and a great improvement in health and well-being. Such an addition i& not very costly and is now being supplied in a considerable number of children's home's in India to the great benefit of the children.

Diets in children's homes and among the general population are often low in fat. Addition of extra vegetable oil (at the expense of a quantity of cereal supplying an equivalent number of calories), does not greatly increase expenditure. Pure ghee or butter is, of course, preferable to vegetable fat, but very much dearer.

Other points to which attention should be given include the following:—If the cereal consumed is milled rice, an improvement in the nutritive value of the diet (and in the health of those consuming it) can be brought about by wholly or partially substituting undermilled rice, whole wheat, or one of the millets, particularly ragi. If milled rice remains the basis of the diet, it should be realised that the milled rice eater needs more "protective" foods, milk, green vegetables, fruits, etc., than the consumer of whole wheat or ragi. When the diet is almost wholly composed of rice—when people are so poor that they cannot afford to buy other foods except in minute quantities—then the state in which the rice is eaten becomes of paramount importance. Parboiled rice, even when milled, is superior in nutritive value (particular'y as regards the anti-beriberi vitamin) to raw rice milled to the same degree.

Pulses are rich in protein and in some of the B vitamins; 2-3 ozs. per day will increase the nutritive value of a diet largely composed of cereals. The soya bean is rich in protein and fat. If soya bean is to be widely used in India, considerable attention will have to be given to methods of preparing it in a palatable form* When cooked as a dhal, it does not seem, however, to have any advantage as a food for human being over other pulses in common use in India and the pulses in general are less valuable dietary supplements than animal foods such as milk, fish and meat. A preparation of germinated soya bean called the soya bean milk has, however, been shown to be nutritious and cheaper than cow's milk.

Fruits should particularly be included in children's diets. Plantains, a cheap fruit often¹ supplied in hostels, are good food but not of exceptionally high nutritive value. Tomatoes and oranges and other "juicy" fruits are richer in vitamins and make a useful addition to diets of the poorer type. Whenever the question of cost precludes the use of fruit, a higher intake of green leafy vegetables will provide the nutrients usually obtainable from fruits.

In attempting to improve unsatisfactory diets it is often impossible to make sweeping changes and plan the whole diet afresh. The addition of a single food of high nutritive value such as milk, or green leafy vegetables, may in itself correct some of the more serious deficiencies of a diet and produce an improvement in the health of those who cojisume it. Daily doses of iron or calcium salts may have an excellent effect. Within recent years, the chemical constitution of a number of vitamins has been discovered and some of them can now be manufactured cheaply and in large quantities. Vitamins produced in this way are just as valuable to the body'as vitamins contained in foods.

Recent developments in research and industry have made it possible to produce many vitamins in pure form and at a relatively low cost with the result that attempts to improve the nutritive value of foodstuffs by their addition have been made in more than one country. In England, vitamin B_x made in a factory was, during the early years of the war, added to bread made from refined wheat flour to bring its nutritive value nearer to that of whole meal bread. In the United States of America, a few foods are being fortified with synthetic vitamins for the last few years. In India, the Nutrition Advisory Committee of the Indian Council of Medical Research has recommended fortification of toned milk and 'vanaspati' with vitamin A and of refined wheat flour with B vitamins. While these recommendations, when implemented, may help in improving the situation, it has to be emphasized that a permanent improvement in the state ot nutrition can *only be achieved through a suitable combination of ordinary foods in our daily diets.

•

The question of cost has been strongly emphasised in the preceding paragraphs. But cost is not always all-important. It is not orly the poor, whose choice in the matter of food is extremely limited, who are ignorant and prejudiced about diet and suffer in health because of it. Plenty of people in India and elsewhere, who cifiild afford to consume an excellent diet, and feed their children on an excellent diet, do not in fact do so. One can readily find among children of the more prosperous classes, cases of serious malnutrition and food deficiency disease. One of the tasks of those who are striving to improve diet in India.is to educate the educated.

Human beings, and particularly children, cannot thrive at their best on a diet composed largely of cereals such as rice, millet, etc., and insufficiently supplemented by" other foods. To make good the deficienices of such a diet, they must consume fair quantities of foods like milk, green vegetables, eggs, fruits, etc. These are sometimes known as "protective" foods, since they are rich in proteins, vitamins, and mineral salts and protect the body against the ills which result when the diet is largely based on less nutritious foods, such as milled rice. Fish liver oils, which are rich in vitamins A and D, may for present purposes be classed as most valuable "protective" foods.

In general, diets in India are defective because they do not contain "protective" foods in sufficient abundance. Our aim in public health nutrition work in general and in planning "well-balanced" diets, must be to increase intake of "protective" foods. The classes in the community which are particularly likely to suffer if their diet is defective are infants and growing children, and expectant and nursing mothers.

MALNUTRITION

It is advisable that those who are responsible for the institutional care of children, etc., ana all who are concerned with practical nutrition work, should have some idea of the effects on the body of a diet which is ill-balanced and defective—e.g., of a diet which is largely composed of milled cereals and contains an insufficiency of protein, mineral salts and vitamins—and which calls for improvement. There is a long list of diseases, common in India, due in some way or other to dietetic causes. Such are: beriberi, certain anaemias of pregnancy, keratomalacia, osteomalacia. States of malnutrition which fall short of serious disease are wide-spread. A wellbalanced diet is essential if growth and development are to take place normally. A badly fed child is often small for its age and thin; its "weight for height" will be below average. It will fall sick easily. The frequency of minor ailments in school children can be reduced by improving the diet. A. certain apathy, a lack of "pep" of enthusiasm for work and play, is characteristic of the malnourished. The state of the skin is a sensitive index of faulty feeding; a rough dry skin, or a skin covered with a papular eruption, suggests faulty feeding. Everybody knows that a well-fed animal exhibits a certain glossiness and sleekness of fur—a "good coat"—which is not seen in poorly fed animals. Similarly a well-fed human being has a glossy skin and a glow of health. Bright clear eyes are also a sign of a satisfactory feeding. Xeroph^halmia (areas of dryness on the conjunctivae 01 the eyes sometimes covered with white exudative patches known as Bitot's spots) is associated with vitamin A deficiency. Sore mouth and tongue and erosions at the angles of the mouth are found in ill-fed children; in the properly fed child the tongue should be smooth and evenly coloured and not show enlarged papillae, fissures and areas denuded of * the superficial epithelium. Such lesions, occurring most commonly in milled rice eaters maybe due to riboflavin deficiency; they can often be rapidly cured by increasing milk intake. Spongy bleeding gums suggest vitamin C deficiency—mild scurvy and call for a greater consumption of fresh fruits and vegetables.

DIETARY REQUIREMENTS OF EXPECTANT AND NURSING MOTHERS

First, it must be realised that the well-being of the infant depends to a considerable extent on the diet of its mother during pregnancy and lactation. Reference to this point has already been made in previous sections. The nourishing of the child makes extra demands on the mother, and her requirements of proteins, vitamins and minerals are increased in consequence. "Extra" requirements during the later months of pregnancy and lactation have been indicated in the Table on page 15.

THE FEEDING OF INFANTS

It is not proposed to include a full and detailed account of Infant feeding methods in this Bulletin. Those specially concerned with this branch of the subject of nutrition should consult appropriate books and pamphlets. Two pamphlets published by the Indian Red Cross Society, "Diet for Nursing and Expectant Mothers" and "Hints on Weaning and Feeding Children", may be recommended; also "The Use of Fresh Milk in Infant Feeding" (May 1942) and "The Feeding of Children from Six Months to Six Years in War Time" (March 1944) both published by the Indian Research Fund Association, New Delhi. It will, however, be useful to emphasise a few points of importance in connection with the feeding of infants and make a_v number of suggestions.

DIETARY REQUIREMENTS OF INFANTS

Up to the present, the subject of infant feeding in India has not been fully investigated* by scientific methods, and only very tentative recommendations can

be made. The following figures represent roughly the daily calorie requirements of average normal infants of various ages:—

1st we	ek.		•	•				•		•	Calories 200
1st mo	nth.										.240
2nd m	onth.		•		•	•		•			400
3rd mo	onth.	•	•		•	•		•	.:		450
5th mo	onth.				•	-		•			.600
8th mo	onth.				•		•		.'		700
12th m	onth.				•		•				.800

These figures are 20-25 per cent, below those usually recommended in the case of infants in Europe and North America. In estimating the calorie requirements of infants, account is usually taken of both age and weight. An infant which is large^ vigorous and healthy for its age may need more food than an ordinary infant of the same age, but, on the other hand, over-weight may be due to excessive deposits of fat caused by over-feeding, and call for a reduction of food intake to a point nearer the average. A small emaciated infant, far under-weight, requires more food than a better nourished infant to bring it into a normal condition. While, calculations based on the actual weight of the child have certain advantages, it is often sounder, all things considered, to estimate an infant's food requirements from age rather than weight. It is quite simple to translate the schedule of calorie requirement given above into terms of food.

BREAST FEEDING

The main food of most infants is breast milk. Human milk yields 20 calories per oz., so that an average infant in the second month, fed exclusively at the breast, would require about 20 ozs. of milk a day—4 ozs. piY feed if it is fed 5 times in the 24 hours. The breast milk secreted rarely exceeds 30 ozs. per day, and from € months onwards solid food may be supplied to provide the necessary calories. Artificially fed infants require slightly more milk than breast fed infants, since the fat and protein in the milk of the cow and other species are less easily assimilated by the infant than human milk and the wastage is therefore greater.

The best food for infants is breast milk. This statement is unquestionably true and is established not only by general experience but also by scientific observations. Breast milk has the advantage over other kinds of milk in that it is less likely to be contaminated; "artificial" feeding involves greater danger of infection, particularly among the poor whose sanitary standards are perforce low. Nevertheless, it is a mistake to assume that, because an infant is being nourished in the natural way at its mother's breast, everything is for the best, and no further attention <0 the infant or the mother is necessary. If the infant is to thrive on breast milk, it must receive regularly enough breast milk of good quality.

In actual fact, ill-nourished women of the poorer classes have often not got nearly enough milk to supjily the needs of the growing infant. Everybody knows that the milk yield of cow* in India is small compared to the yiqjd of fat gloFsyskinned cows fed in the rich pastures of Northern Europe and America. Exactly the same is true in the case of poor Indian women. The total quantity of milk which such women can give daily may be only one-third of that given by women fed on a richer diet. The average Indian infant at birth weighs somewhat less than the average European infant, but not very much less, and there is no reason to suppose that the food requirements of the former during ths first year of life are much smaller than those of the latter. At the age of one year Indian infants of the poorer classes are on the average small and light as compared with the usual standards, and this may be in large part due to the fact that they have never received enough food.

The yield of breast milk' can often be increased by improving the diet of the mother. It is, however, not very helpful simply to advise a poor woman to takemoie milk, ghee, vegetables, etc., since she usually cannot afford to buy such food in sufficient quantities.

The amount of milk supplied by a mother can be estimated by "test feeds" which means the careful weighing of the infant before and after feeding, or by completely expressing the milk from the breast into a sterile bottle before a number of feeds, and weighing it. In practice, the best guide to the adequacy of the milk supply is a regular and sufficient gain in weight, and test feeding is necessary only in the case of infants who fail to achieve an average gain of 4-5 ozs. per week.

ARTIFICIAL FEEDING

If the daily quantity of breast milk available is not enough, then the infant's, diet should be supplemented by some other form of milk, suitably modified. Sometimes no breast milk at all is available for the infant, in which case it has to be entirety "bottle" fed. Cow's milk, the food most commonly used in the "artificial" feeding of infants, has a calorie value roughly similar to that of human milk. Goat's milk has a slightly higher calorie content. Buffalo's milk, which is very rich in fat, yields about 30 calories per oz.

Whatever type of milk is given as a substitute, it must be diluted with clean boiled water. The milk of cows, goats, and buffaloes is richer in protein than thuman milk, probably because the young of these species grow much faster than a baby; the protein of such milks is not, however, as suited to the infant as that of human milk. The addition of suitable amounts of water to such milks brings the protein content nearer to that of breast milk. Another point of importance is that human milk contains more sugar (lactose) than most other mammalian milks, and when these are diluted their sugar content falls far below that of human milk. To remedy this deficiency, it is usual to add sugar to milks given to infants to replace breast milk.

If cow's milk has to be given to an infant during the first few days of life, then a suitable dilution is 2 parts of water for 1 part of milk. The proportion of water may be gradually reduced so that by the end of that first week the milk mixture contains equal quantities of milk and water, and at 6 months whole milk is given. The amount of sugar added *per day* may be gradually increased from about 1 teaspoonful (about 6 grammes) in the first week to 4 teaspoonful at 6 months (about 24 grammes).

During the first few days of life the baby should be given 3-4 feeds per day From this point until the end of the first month it may be given 6 feeds daily. Subsequently the number of feeds may be reduced to 5, this number being given throughout most of the first year of life.

It is essential that all milk given to infants should be boiled, and all utensilsused in feeding should be steamed or boiled in clean water.

Vitamins and minerals.—Vitamin G in some form may be given from the 2nd month onward. The quantity given should correspond to a daily dose of not less than 5 milligrammes of vitamin G. About 10 c.c. (two and a half teaspoonful) of orange or tomato juice will usually supply this amount. Other kinds of fruit juice—papayya juice, mango juice, etc.—can be used as a source of this vitamin.

Infants fed on the breast milk of a healthy mother, or on whole cow's milk of good quality, can thrive without receiving additional supplies of vitamin A. It is, however, often recommended that cod or shark liver oil should be given to infants as a supplement, beginning w-!th 2 drops a day at about the 15th day, the dose being increased gradually until one teaspoonful is reached by the end of the second month*

Cod or shark liver oil is of value in that it contains vitamin D. In many parts of India vitamin D is supplied by the action of sunlight on the skin. In parts df North India where rickets is not uncommon, vitamin D may be of great importance in infant feeding.

Premature and sickly children may be benefited by iron given in various forms. Children fed exclusively on milk for over nine months may develop anaejnia, which can be prevented by the administration of iron.

Various forms of milk: Special "infant foods".—In many countries today there is an increasing tendency to use preserved milk and "infant foods" of various kinds in place of breast milk and fresh cow's milk. In India this practice is largely confined to the more prosperous classes, but it is not uncommon to find poor people buying tinned milk, etc., for their infants. Purchaseis often feel that they are buying the best form of food for their babies and children. It is important that those concerned with teaching the people about food and diet should have a clear idea about the natiite and value of such preparations.

Evaporated milk.—This is cow's milk from which water has been evaporated under reduced pressure at a sufficiently high temperature to destroy all bacteria. The resulting product is thick milk about twice as concentrated as fresh milk, which can be reconstituted into milk by the addition of water. Evaporated milk, sometimes called "unsweetened condensed milk" is a wholesome product, and can be used to replace other forms of milk in the diet of infants and adults. It has the disadvantage that it keeps for only a short time after the container is opened. Vitamin G is, however, destroyed in the manufacturing process, and it is essential that infants fed exclusively on such milk should be given this vitamin e.g., in the form of fruit juice. If originally prepared from milk of high quality, evaporated milk may be superior in nutritive value to fresh milk obtained from infeiior cows or subjected to adulteration.

Condensed milk (sweetened) is prepared in a similar manner to evaporated milk, except that lower degrees of heat are employed. Cane sugar is added in large quantities; the final product may contain as much as 20 per cent, of sugar. Condensed sweetened milk cannot be recommended for infant feeding. The large amount of sugar present involves a proportionate decrease in the content of protein, fat and minerals. Further, the sugar may cause intestinal irritation and upset.

Dried or powdered milk.—This is cow's milk which has been rapidly dried to-powder at a high temperature by various industrial processes. The resulting product is simply the solids of milk in powdei form. Dried milk, which can be reconstituted into liquid milk by the addition of about 8 times its weight of water is a sound food product, much used in infant feeding. Various "humanised" dried milks, have achieved wide popularity as infant foods. Vitamin C should always be given. Co infants fed on dried milk.

All these kinds of milk are produced in the "whole" or "skimmed" form*; the latter is prepared from milk from which the fat has been removed and is considerably cheaper than the former. No type of skimmed milk is suited to form thesole food of infants; its exclusive use may lead to a very serious eye disease called keratomalacia which is due to vitamin A deficiency and is a common cause of blindness. Condensed sweetened skimmed milk is particularly dangerous if used in this manner. Nevertheless, milk reconstituted from evaporated or dried skimmed milk can be used safely if some substance containing vitamin A (e.g. cod or shark, liver oil) is given at the same time. Actually skimmed milk reconstituted from, powder can justifiably be recommended for infants of very poor mothers if it is the case of cheap skimmed milk or no milk at all. It is, however, essential that vitamin A should be given simultaneously. Older children living on a mixed^diet can greatly benefit by skimmed milk.

^{*} There are also half-cream preparations.

Various forms of infant foods.—(a) Dried milk with malted cereals.—Roods of this nature have little place in infant welfare work among the poor though they may be useful when given under medical supervision in special cases. The proportion of altered starch to milk is usually high (about 50 per cent.) and such foods, given alone, are unsuitable for prolonged feeding. Further, their cost is excessive in relation to their nutritive value.

- (b) *Dried milk with unmalted cereals.*—Products with this composition can be criticised on the same grounds. They are unsuitable for infants under 6 months, who cannot digest unaltered cereal starch.
- (c) Foods which are entirely composed of cereals.—There is little justification, for the use of such foods which are entirely unsuited to form the basis of an infant's diet. The food elements which they contain are similar to those piesent in ordinary cerea's such as wheat and rice which can be bought at an infinitely lower price.

WEANING

An Expert Commission of the League of Nations makes the following recommendation about the duration of breast feeding:—

"Breast feeding which is always superioi to artificial feeding should be continued up to the age of six months at least even when mixed feeding is resorted to. It is useful to continue partial breast feeding up to nine months."

Ideally, weaning should take place as follows: At about the end of the 7th month the breast-fed infant's diet is supplemented by a certain amount of cow's milk and solid food, and its intake of breast milk correspondingly reduced. After about the 10th month it receives no more breast milk, the latter being leplaced by cow's milk, which remains the most important constituent in the diet. Solid foods suitable for infants during the period of weaning include cereals (e.g., gruel congee, bread or chapa.ttis with ghee or butter), pulses in various forms, tender green leafy vegetables and other kinds of vegetables cooked soft, mashed fruits, egg yolk, etc. Vegetable soups are to be recommended. During the first few months of life an infant cannot digest starch' unless perhaps in very small quantities and any form of solid food is likely to cause gastric and intestinal trouble. From 6 months onwards it is usually able to assimilate starchy foods such as cereals.

 $_{\rm x}$ At the age of one year the baby should receive plenty of solid food, including cereals, pulses, vegetables, fruits, etc., but a considerable propoition of the diet should consist of milk. This is necessary to satisfy adequately the protein needs of the infant for healthy growth. Faulty feeding during the post-weaning period may result not only in marked growth failure but may even lead to a protein deficiency condition known as nutritional oedema syndrome (kwashiorkor) which, if untreated by high protein diets, often ends fatally.

The difficulties of infant welfare work in practice.—In the previous sections sounfi methods of infant feeding have been outlined. Those engaged in infant welfare work need a goal to aim at. In practice, however, it is often extremely difficult to apply such methods because of their cost. The greatest need of poor mothers and their infants attending welfare centres is usually more food (milk, etc.) and there is not enough money available to supply their requirements. The weaned infant often presents a problem of great difficulty. As long as it is receiving breast milk it may do fairly well, but if, on weaning it passes to a diet of, let us say, rice, congee and water, without sufficient milk, a great deterioration in its condition often takes place.

TJie usual practice in welfare centres in India, when poverty prevents the use of cow's milk, is to allow the mother to continue breast feeding even up to 2 years of age. The method gives satisfactory results provided it is possible for the mother to taketadditional good food and consume a diet satisfactory in quality and quantity. As regards the child, the most important aspect of weaning is the introduction of solid., not the stoppage of suckling.

It has been pointed out that even the breast-fed infants of apparently healthy mothers may not get enough nourishment. The enrichment of the diet of the mothers will increase the flow of milk and improve her health. Such infants m^y also be benefited by an extra daily feed of cow's milk. If, however, whole milk is out of the question, skimmed milk may legitimately be supplied, provided cod or shark liver oil is given simultaneously. • Skimmed milk with cod liver oil may be given, before and after weaning, as supplementary foods to infants whose intake of milk is insufficient. There is the possibility that cheap malted cereals may be used to increase the calorie intake of infants, particularly infants under 6, months, but more work on this question is necessary.

", If infants when partially or wholly weaned cannot be supplied w'th enough milk, malnutrition can hit to some extent prevented by giving such foods as gruels based on whole cereals, various preparations of vegetables, mashed fruits, ett. The worst cases of malnutrition usually follow a diet which consists almost wholly of milled rice. Infant welfare workers should teach mothers how to prepare suitable cheap cereal, vegetable and fruit mixtures for their infants, the type of mixture depending on the local customs and the kinds of food which are cheap and available.

In the decade 1941-50, about ten million infants in India died before reaching the age of one year. A high percentage of these deaths was due to malnutrition.

NOTES ON FOOD VALUE TABLES

The foodstuffs analysed were mostly obtained in the local market, Goonoor. Foods *which may be described as common Indian foods, consumed throughout the country, originated in the majority of cases in the neighbouring plains of the Coimbatore district; others of a kind less widely used in India (e.g., European vegetables such as lettuce) were largely grown in the neighbourhood of Coonoor, 6,000 feet above sea level. Among the foods analysed Were some froni other parts of India, including North India. The edible portion of the foodstuff, in as fresh a state as possible, was used for the analysis. The method of analysis is described in a paper in the Indian Journal of Medical Research.*

The figures given represent percentages, i.e., grammes per 100 grammes. Iroi is expressed as milligrammes per 100 grammes. Vitamin Bj and riboflavin are given in microgrammes . ($|ig\rangle$); a microgramme is one-thousandth of a milligramme. The great valiety of Indian measures makes it difficult to supply metric and avoirdupois equivalents for the weights used in the various States. In using the Bulletin in practice, the following conversion table may be useful:—

lSeer=21l	S.		•					•	=907-2 g.
lib. (avoir	dupoi	s) =8	chataks.					•	=453*6 g.
lchatak=	2oz.							•	= 56-8 g.
1 oz. (avoir	dupoi	is) = 2	J tolas					•	= 28"4g.
1 tola					:		•	•	. = 11'6g.
1 killogran	ıme oı	r 1000	gm.	•	•		•	•	= 2*2 lbs. (avoirdupois).
100gm.	•	•	•		•	•	•	•	= 3*5 az. (avoirdu- pois) or 8*62

The vitamin A and carotene figures were assayed by chemical and spector-graphic methods, while vitamin G was estimated chemically. In the case of vitamin B_x , biological and chemical methods were used. The absence of figures or estimates of vitamin content means that tests have not yet been carried out. The figures for nicotinic acid and riboflavin are partly based on analysis made in the laboratories and partly from published work in India.

 $^{^*\}mbox{Ran}_3\mbox{anathan},$ Sundararajan and Swaminathan, Indian Journal of Medical Research, 1937, 24, 689.

_			-,				 -	 -							
- Serial number	Name of foodstuff	to Botanicki name	+ Moisture %	c Protein %	^{ch} Fat (Ether extractives) %	2 Mineral matter %	e Fibre %	6 Carbohydrate %	O Calcium (Ca) %	Il Phosphorus (P) %	% in (24) J	22 Calorific value per 1	Carotene (International	".Vitamin B. 4g. per 100g.	
		1	1	1		1 .	1	1	{	1		1	1	G'er	e
1	Bajra or cam-	Pennisetum	12-4	11-6	5-0	2-7	1-2	 67-1	005	0-35	8-8	360	1	330	
2	bu. Barley	typhoides. Hordeum	12-5	11-5	1-3	1-5	3-9	69-3	0-03	0-23	3-7	335		450	, [
3	Gholam.	vulgare. Sorghum	11-9	10-4	1-9	1-8		74-0	003	0-28	6-2	355	1	345	.
4	Italian millet	vulgare. Setaria Ita-	11-2	12-3	4-7	3-2	i	I 60-6	0-03	0-29	6-3	334	54	585	ŀ
5	"Kootu" or	lica. Fagopyrum	11-3	10-3	2-4	2-4	8-6	 6 5 0	007	i 0-30	113-2	323		900	
_	Buckwheat.	esculentum	79-4	4-3	0-5		i	15.1	0.01	 0.10	1 . 7	82	43	120	1
6	Maize, tender	ZeaMays	14-9	11-1	3-6	0-7 1-5	2-7	15-1 I 66-2	0-01	I 0-10 0-33	I 0-7	342	1	120 420	1
7	Maize, dry .	Do.	10-7	13.6	7-6	1-8	3-5	62-8	005	•	•	374	Trace	1	l
8	Oatmeal . Panivaragu .	Avena sterilis	11-9	12-5	1-1	3-4	1	I 68-9	003	0-38 1 0-33	1 5-6 1 5-7	336	iTrace]	l
10	Ragi	Panicum miliaceum.	13-1	7-1	1-3	2-2		76-3	0-33	0-27	5-4	345	70	420	ľ
11	Rice, raw, home-pound- ed.	Eleusine coracana.	12-2	0-5	0-6	0-7	 	78-0	0-01	0-17	2-8	351	4	180	
22	Rice, parboil- ed, home- poundeds		12-6	8-5	0-6	0-9		77-4	0-01	0-28	2*8	349	15	270	
13	Rice, raw, mil- led.		130	6-9	0-4	0-5	••	79-2	0-01	0-11	1-0	348	0	60	l
14	Rice, parboil- ed, milled.		13-3	6-4	0-4	0-8	••	79-1	0-01	0-15	2-2	346	0	210	
15	Rice, white, Puttu	Oryza	130	7-5	0-4	0-4	••	78-7	0-01	0-08	3-3	348	••	••	l
16	Rice, black, Puttu.	sativa.	12-3	7-7	1-3	1-3	0-7	76-7	0-01	0-24	4-9	349		••	
17	Rice, flakes .	1 1	12-2	6-6	1-2	1-8		78-2	002	0-22	80	350		210	ı
18	Rice, puffed.]	14-7	7-5	0-1	3-4	••	74-3	002 1	0-16 1	6-2	328	••	210	
19	fRice, raw, u n m i 11 e d (prepared in wooden grin- der).		14-1	7-2	2-3	1-3		75-1	001	0-23	4-5	350	**	285	
20	tRice, raw, home-pound- ed, in		14-5	6-8	1-4	1-1		76-2	0-01	0-21	3-6	345	••	240	
21	Ricr, raw, milled.	}	14-4	6-7	0-7	0-8		77-4	0-01	0-16	1-9	343		90	
22	Samai • •	Panicum miliarc.	11-5	7-7	4-7	4-8	7-6 İ	63-7	0-02	0-36	7-1	328	Trace	300	
23	Sanwa millet.	Echinochloa Golona Link var. fruman- tacea.	11-9	6-2	2-2	4-4	9-8	65-5	Q·02	0-28	2-9	307	Trace		

[•]WRolc grains are rich in vitamin B_{lf} while milled grains are largely deprived of this vitamin. An exception is parboiled milled rice, which retains a large part of vitamin B_t after milling.

jThese were prepared from the same sample of paddy.

3

	:	:	m	<i>m</i> ▼	• en	4k * -	4k Ö	:	:	W 00	- to	4k O	ha 4k	:	m •	<u>:</u>	> - 4 k	o en	4k 4k	o vl	- 00	4k v l	to	_W &	£ Nicotinic acid mg. per 100g.
	•	:	:	:	:	:	:	:	:	:	S	120	120		:	:	100	S	341	:	364	1 244	٠.		Riboflavin (Ag. per 100g.
	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	4k	;	:	;	;	:		g Vitamin C mg. per 100g.
	0a 4k	oa oa	4 k	4k	4k Ŏ	4k' 10	La Ui	oa Ul	v	oa 00	vi	to en	oa Ui	oa v l	oa 4k	oa O	4k to	ha oa	دی to	to	ŵ W	ćn	ب ه تا		Moisture, g.
_	- 00	to to	o o		ha O	to		to to	to -	н -	to ©	to • 4k	ha 4*	to O	oa cn	w to	oa to	»» ha	ha to	oa ui	oa o	oa oa	oa oa		g Protein, g.
	o en	1-3	o to	©	0-7	Ą	o oa	0-4	Ą	<u>.</u>	o	O ha	O to	Q 4k	0-3	to ha	i	ó	٠ .	1.9	0	0	1-4		If- Fat (Ether extractives) ,g.
•	oa oa	:	o to	o oa	0-4	÷	© •	0-4	0	O to	0	0	o to	o	ė	0	0-4	0	0.7	0	0	0	<u> </u>		JS Mineral matter, g.
	00	to	:	:	:	:	:	o ha	:	:	- :	:	:	:	•	<u>;</u>	00	:	1 3	oa	:	TT	o oa		g Fibre, g.
	ço en	00	SS	ha en	ha u	ha -	\$\$ to	<u>to</u> 00	jg oa	hi vi	13 6	R Úl	SS to	ha v l	to •	v 1 00	00 00	^{4k} oa	00 4k	vi ha	to o	to VI	to		2g Carbohydrate, g.
	en	en	09	oa	oa	en	a	oa	»	oa	oa	oa	oa	\$	oa	S	oa	oa	S	0B	00	00	=		J5 Calcium (Ca), mg.
	790	100	t	S	2	\$	a	7	S	\$	a	S	Ui	v l	4?	110	8	8	a	3	3	8	8		£\$ Phosphorus (P), mg.
	00	ha O	Q Ui	ó	oa	00	ha oa		o to	o en	o oa	" do	0 00	UI	^ en	^ <u>:</u>	4	O to	oa 00	00	00	^. _	oa -		£5 Iron (Fe), mg.
	SS	8	₹?	*	g	S	8	g_	\$	88	\$	S	100	s	8	106-	97	23	g	S	101	B	102		g Calorific value
	Trace	Trace	:	:	:	:	;	:	:	:	:	4k	,^	8	Trace	Trace	:	B .	:	₩	3	:	S		g Carotene (International Vitamin A Units)
	:	8	8 -	- 8	pa	8	S	:	:	S	17	77	- Ui	119 :	:	153 1	119	K	256	166 :	S		4?		3 Vitamin B _t (Ag.
	:	:	i	:	1-3	1-2	1:1	:	:	1:1	o, oa	I·I	O VI	oa	:	-0-3	4k	Ò-Z	1-3	to	m	1-3	ο <u>·</u>		^Nicotinic acid, mg.
	:	:	:	:•	I	:	I	:	:	:	8	S	s	<i>'</i> .	:	:	28	4 k	97	:	103	S	:		x Riboflavin, (Xg.
	:	:	:	:	:	:	:	:	:	:	'!	:	:	:	:	:	:	_	:	:	:	:	:		Jg Vitamin C, mg.
	8	is	to	S	to	S	ΧĬ	⊙ >	υī	4k	oa	13	=	6	to	00	ΧI	cn	UI	4k	os	to	_	1	4? Serial number

				_										
	foodstuff				entractives) %	*		8	%	% %	26	per 100 g.	(International Vita- units per 100g.)	I I
뵻	<u> </u>	- State		•		i i			0	€	Ē	value	i i i	١.
number	8	1	₽. %	%	(Ether	Mineral matter	%	Carbohydrate	1	ğ	(Fe)		93	٦
-	P .	s Botanical	Moisture	量	ĕ	E		'g	Calcium	Phosphorus		Calorific	Carotene min A	y itamio
Serial	New 2	Pot Pot	Ko	Protein	Fat	χij	Fibre	3	ਤੋਂ] & ₽	Iron	Ĵ	9.5	
1	2	3	4	_5	_6	7	8	9	<u> </u>	11	12	13	14	15
]						1					C	ere
24	Talipot, flour, untreated.	Caryota urens.	13-1	2-4	0-3	2-5		81-7	0-13	0.06	20-0	339	}]
25	Talipot, flour, treated.*	Do.	7-3	1-3	01	1-9		89-4	009	004	122-2	364	وا	
26	Vermicelli .		11-7	8-7	0-4	0-5		78-7	002	0 • 08	0-3	358	Trace	
27	Varagu or ko- du millet.	Paspalum scroticua-	12-8	8-3	1-4	2-9	90	65-6	004	0-24	5-2	308	Trace	330
28	Wheat, whole	tum. Triticum	12-8	11-8	1-5	1-5	1-2	71-2	0.05	0-32	5-3	348	108	540
29	Wheat, flour, whole (atta).	aestivum Do.	12-2	12-1	1-7	1-8		72-2	004	0-32	7-3	353	;	
30	Wheat flour, refined.	Do.	13-3	11-0	0-9	0-4	0-3	74-1	0-02	0.09	10	349		120
								ŀ]	Ì	'	Pill
1	Bengal gram (with outer husk).	Cicer arie-	9-8	17-1 .J	5-3	2-7	3-9	61-2	019	0-24	9-8	361	316	300
2	Bengal gram, roasted (with- out outer husk).	Do.	11 -2	22-5	5-2	2-2		58-9	007	0-31	8-9	372		••
3	"Bhetmas" .	Glycine his-	8-8	41-3	17-0	4-5	4-3	24-1	0-21	0-60	9.9	415	l	
4	Black gram without outer husk).	plda. Phaseolus mungo.	10-9	240	1-4	3-4	••	60-3	0-20	037	9-8	350	64	420
5	Cow gram .	Vigna cati-	12-0	24-6	0-7	3-2	3-8	55-7	007	0-49	3-8	327	60	500
6	Field bean,	Dolfchos	9-6	24-9	0-8	3-2	1-4	60-1	0.06	0-45	20	347	Trace	520
7	dry. Green gram (with outer	lablab. Phaseolus aureus	10-4	240	1-3	3-6	4-1	56-6	014	0-28	8-4	334	158	465
	husk). Horse gram .	Roxb. Dolichos	11-8	22.0	0-5	2.1		55.3	0.20	0.20		222	110	
9	"Khesari" .	biflorus. Lathyrus	10-0	28-2	0-5 0-6	3-1	5-3	57-3 58-2	0-28 011	0-39	7-6 5-6	322	119 200	420
10	Lentil (Masur dhal).	sativus. Lens culi- naris Medic	12-4	25-1	0-7	2-1		59*7	0-13	0-50 0-25	20	346	450	450
11	Peas, dried .	Pisum sati-	16-0	19-7	1-1	21	4-5	56-6	007	0-30	4-4	315		450
12	Peas, roasted .	fvum. Do.	9-9	22-9	1-4	2-3		63-5	003	0-36	50	358		-50
19	"Rajmah" .	I	12-0	22-9	1-3	3-2	••	60-6	0-26	0-30	5-8	346		••
14	"Rawan" .	Vigna	12-7	23-4	1-3	2-9		59-7	008	0-41	4-3	344		••
15	Rcd gram (Dhal arhar) (without out- rrtlusk).	sinensis. Gajanus cajan.	15-2	22-3	1-7	3-6		57-2	0-14	0-26	8-8	333	220	450
16	Soya bean .	Glycine Max. Mcrr.	81	43-2	19-5	4-6	3-7	20-9	0-24	0-69	1f-5	432	710	730
	•		•											

[•] Soaked with 4 times its weight of water allowed to settle overnight, supernatant liquid discarded and residue Sun-dried.

		· + ˈ							alues	per	Ounce			_		,		-
Nicotinic acid mg. per 100g.	I	18 Vitamin C mg. per 100	6 Moirture, g.	Trotting g.	12 Fat (Ether extractives), g.	55 Mineral matter, g.	23 Fibre 8.	7 Carbohydrate, g.	Celcium (Ca), mg.	Phosphorus (P), mg.	27	S Calorific value	Garotene (International,	9. Vitamin Br 14g.	31 Nicotinic acid, mg.	S. Riboflavin, p.g.	S Vibratio C, m.r.	34 Serial num
als	-con	td.	Ī	1		1	T	1		\overline{I}	Ī	Ī	i	Ī	Τ	Ī	<u>. </u>	i
		"	3-7	0-7	01	0-7		23-2	37	17	5-7	96) NII	ţ		 		24
	,		2-1	0*4	<0.1	0-5		25-4	25	11	6-3	103	}""	\{ \t	.]			25
	271		3-3	2-5	0-1	0-1		22-3	6	24	0-1	102	Trace	ļ	١.,	77		26
"			3-6	2-4	0-4	0-8	2-6	18-6	10	70	1-5	87	Trace	94]	27
50	120		3-6	3-4	04	0-4	0-3	20-2	14	91	1-5	98	31	153	1-4	34	۱.,	28
••	}		3-5	3-4	05	0-5		20-5	11	91	20	100						29
0*9	٠.		3-8	31	0-3	0-1	01	21-0	6	26	0-3	99		11	0-3	·		30
ses				ŀ		1									Ì			
2-6	509		2-8	4-9	1-5	0-8	1-1	17-4	54	68	2-8	103	90	28	0-7	145		1
	389		3-2	6-4	1-5	0-6		16-7	20	88	2-5	106				110		2
2-0	 370	 	2-5 3-1	11-7	4-8 0-4	1-3 1-0	1-2	6-8	60	170 100	2-8 2-8	118 99	18	119	0-6	105		3 4
1-3	4			ļ. 	ļ													'''
1-8	477	 	3*4 2-7	70 7-1	0-2	0-9	0-4	15-8 170	20	130	0-6	93	17 Trace	142	0-4 0-5	135	••	5
2∙0	387		30	9-B	0-4	1.0	1-2	161	40	80	2-4	95	45	132	0-5	110		7
1-5	195	<i>.</i>	3-4	6-3	01	0-9	1-5	16-3	80	110	2•1	91	34	119		55		
 `. . ;	414		2-8	80	0-2	0-9		16-5	51	140	1•6	1 1	57		04	118		8
1-5	489	••	3-5	7-1	0-2	0-6		170	97	70	0 •6	98	128	128	04	139		10
1-3	500	••	4-5	5-6	0-3	0-6	1-3	161	20	85	1.•3	89	••	128	0.4	142		11
''	٠- ا	••	2-8	6-5	0-4	0-7		180		100	1.4	102		••				12
::		**	3-4 3-6	6-5 6-7	0-4	0-9		17-2 17-0 1	74 23	120 120	1•6 1–2	98 98	•-	••	••	٠٠	••	13
2-4	506		4-3	6-3	0-4 0-5	0-8 1-0		16-2	40	70	2-5	95	62	128	0.7	144		14 15
2-4	760		2-3	12-3	5-5	1-3	1-1	5-9	70	200	3-3	123	202	207	0-7	2 16		16

tSprouted pulses contain 10-15 miUigrammes of vitamin C per 100 grammes. ${\bf 3}$ ${\bf -3}$ M of Health.

-	1				1	1	-		_				- 1	
7 Serial number	Name of foodstuff	to Botanical name	* Moisture %	1 34	1 1	ntter %	3 Fibre %	6 Carbohydrate %	0 Calcium (Ca) %	S5 (a) snooppours 11	* t I 12	G Calorific value per 100g.	7 Carotere (International Vibrain A units per 100g.)	C. Vitemin B, pt. per 1
1	*'Agathi"	Sesbania grandiflor	7 3 ·1	8-4	1.4	3 -1	2.2	11-8	1-13	008	3-9	93		Leafy
2	Amaranth, tender.	Amaranthu tricolor.	ıs 85·8	4-9	0.5	3 -1		5-7	0-50	0-10	21-4	47	2,500 to 11,000	
3	Amaranth, apined.	Amaran- thus, spin-	85-0	3.0	0.3	3-6		8-1	0-80	0*05	22-9	47		
4	Bamboo, ten- der shoots.	Bambusa bambos.	87 - 1	3.9	0.5	1.4		7-5	002	009	01	47	Trac	e
5	"Bathua" leaves.	Ghenopo- dium albun	87-9 1, f	4.7	0.4	3.3		3-7	0.15	008	4-2	37	,	
6	Bengal gram leaves.	Cicer arietinum.	77-8	7-0	1.4	2.1	}	II-7	C-34	0-12	23-8	87		"
7	Br u s sels sprouts.	Brassica oleracea genmi- fera.	84-6	4-7	0.5	1.0		9-2	G-05	800	2-3	60	210	50
8	Cabbage .	Brassica oleracea capitata.	90-2	1-8	0-1	0-6	1-0	6.3	0.05	005	0-8	33	2,000	·60
	Carrot leaves	Daucus Carota.	83.3	5-1	0.5	2-8		8.3	0.34	041	8-8	58		
10	Celery .	Apium graveolens. Var.dulcc.	81.3	6.0	0.6	2.1	1-4	8.6	0-23	014	6-3	64	5 ,800 to 7 ,500	Trace
11	"Colombo keera".	••	91.3	2.5	0.4	2.1	••	3 ·7	0.09	013	11-9	28	••	••
12	Coriander .	Coriand- rum sativum.	87-9	3.3	0.8	1.7	••	6-5	0-14	0-06	10-0	45	10,460 to 12,600	50
(3	Curry leaves	Murraya koenigii.	66-3	6-1	1.0	4-2	6-4	16-0	0.81	0-6	3-1	97	12,600	80
[4	Drumstick •	Moringa oleifera.	75-0	6-7	1.7	2.3	0.9	13-4	0-44	0-07	70	96	11,300	60
15	Fenugreek .	Trigonella foenum- graecum.	81-8	4-9	0.9	l·6	1-0	9-8	0-47	005	16-9	67	3 ,900	40
16	Garden cress	Lepidium sativum.	82 - 3	5·8	1.0	2.2		8.7	0.36	0-11	28-6	67		150
17	"Sogu" or Red Sorrel.	sabdarifia.	86-2	1.7	1.1	1.0		10-0	0-18	0-04	5-4	57	••	.
18	Gram leaves •	Circerja ricti- num.	60∙0	8-2	0.5	3.5	.	27-2	0.31	0-21	28-3	146	6,700	
19 ¦	Ipompea .	Ipomosa teptans.	90-3	2-0	0-4	2-1		4-9	0-11	0-05	3-9	32	3 ,300	50

FOOD VALUES—contd.

'	<u>. ,</u>	<u>_</u> ,		<u> </u>		<u> </u>														
9		i	4 5		1	l bè		<u>.</u>	1	Val	ues pe	er Ounc	e				•			_
and state districtly (4)		7	8 VIENTE C INC. Per	6 Maisture	50 Protein, g.	N Fat (Ether extractives), g.	55 Mineral matter, g.	23 23	57 Carbohydrate, g.	2	Phoenkon	Iron (Fe), mg.	2	Carotere (International	Vitamis S	o Vitamin 51 µg.	Montinic	Riboffavin, p.	S Vitamin C, mil.	to Serial number
Ve	geta - .	bles •	••	20-8	2-4	 4 0-4	; 1	9 0-		-332		30 1	$\overline{\perp}$		Ī	Ī	Ī	1	 	
	,	Ì			-]	V 0-1		-332	,0 3	" 1	1 2	2,57	⁷⁰ '			••	~ ∤	1
l °	· 9 1	00	173	24.4	1-4	1 0-1	0-	9 .	. 1	6 14	10 S	6.	.1 1	3,12		8 0	3	28	49	2
•	· ·	.	••	24-1	0-9	0-1	. 1	0 .	. 2.	3 22	10 I	0 6-	5 1	3 ,12]			5
0-	2	. .	•	24 ·7	1-1	<0-1	0-	4	. 2.	1	6 2	6 <0.	1 1	3 Tra	ice .	. 0	4			4
	14	15 .	•	25 -0	1-3	0-1	0-9	9	. 1.	0 4	2 2	0 1.	2 1	ı	ĺ.	. .		ıı İ	.	5
		.	ا -	22-1	20	0-4	0-0	s	3.	3 9	7 3	6-1	8 2	5	.	┦.	\cdot	6
0-4	٠.,		72	24 -0	1-3	0-1	0-3	,	2-6	5 1	0 2	o io-7	· 7 17	7 60) 1	4 ¹ 0.	ı			7
0-4	1 30	1:	24	25- 6	0-5	<01	0-2	0-3	1-8	3 8	3 14	4 0-2	2	568	3 17		.	9 3	_	8
0-4	144		.	23- 7	1-4	0:1	0-8		2-3	96	31	2-5	16			0- 2				
		6	2	23-1	1-7	0-2	0-6	0.4	2-4	65	40	1-8	18		Tra					, 9 , 10
				25-9	0-7	01	0-6		10	25	37	3-4	8	2,130	ce					11
0-8	GC	13	5 2	250	0-9	0-2	0-5		1-8	40	17	2-8	13	2,970	I 14	0.2	1	38		12
2-3	208	'	٠ ٠	18-8	1-7	0-3	1-2	1-8	4-5	230	17	0-9	28	3,580 3'5«>	 23	 0-7	59	,		13
0-8		220		21-3	1-9	0-5	0-7	0-3	3-8	120	20	2-0	1 27	3,210	17	0-2		62		14
0-8	162		2	23-2	1•4	0-3	0-5	0-3 I	2-8	[13 0	 14 	4-8	19	1,108	11	0.2	46			15
٠.		٠	2	3-4	1.6	0-3	0-6		2-5	100	30	8-1	19		43				1	16
	102	••	2	4-5	0.5	0-3	0-3		2-8	51	11	1-5	16			 	29		1	17
••		••	1	7-2	2.3	0.1	1-0		7-7	88	60	8-0	41	1,903					1	18 '
0-6	120	137	2	5-6 j	0-8	0-1	0-6		1-2	31	14	1-1 	9 <u>1</u>	937	н	ō-J y	34	39	ĺ	9

											•			
Serial number	N Name of Poodstuff	to Botanical name	A Moinne %	t, Protein %	9. Fat (Ether extractives) %	✓ Mineral matter %	ss Fibre · %	c Carbohydrate %	Calcium (Ca) %	Phosphorus (P) %	** t	Calorific value per 100g.	Carotene (International Vitamin A Units per 100g.)	7. Vitamin B, O. per 1
				ļ	[Ī]	ĺ		L	eafy
20	Khesari leaves	Lathyrus sativus.	В 4-2	6-1	1-0	I- 1		7-6	0-	0- 10	7-3	64	6,000	"
21	Lettuce .	Lactuca sativa.	92-9	2-1	0-3	1-2	0-5	30	0-05	0-03	2-4	23	2,200	40
22	Lettuce tree leaves, ten- der.	Pisonia alba.	B8-6	3-6	0-2	2-2	.	5-4	0- 17	0-06	3-6	38	"	
23	Lettuce tree leaves, ma- ture.	Do.	81-7	5- 1	0-4	2-6		10-2	0-32	0-08	2-6	65	···.	
24	''Manathak- kali''.	Solanum nigrum.	82- 1	5-9	10	2- 1	••	8-9	0-41	0-07	20-5	68		
25	Mint	Mentha spicata.	83-G	4-8	0-6	1-6	2-0	80	0-20	0-08	15-6	57	2,700	50
26	Neem, mature	Azadirachta indica.	59-4	7- 1	10	3-4	6-2	22-9	0-51	0-08	17-1	129	••	••
27	Neem, tender	a Do.	59-4	1 ^{i,} 6	30	2-6	2-2	21-2	0- 13	0- 19	25.3	158	4,600	60
28	Parsley .	Petroseli- num. crispum.	68-4	5-9	10	3-2	1-8	19-7	0-39	0-20	17•9	111	3,200	40
29	''Ponnangan- _ ?>> ni .	Alternan- th^ra	77-4	5.0	0-7	2-5	•.	14-4	0-51	0-06	16•7	84	•	••
3 _P	Rape leaves	' amoena. Brassica napus.	84-9	5•1	0-4	2.5	•.	71	0-37	0- 11	12-5	52	•	••
31	Safllower leaves.	Carthamus tinctorius.	89-9	3.3	0-7	1.0	••	51	0- 18	0.06	7•6	40	5,500	••
32	Spinach .	Spinacia oleracca.	91-7	1.9	0-9	1.5	••	40	0.06	0.01	5•0	32	2,600 to 3,500	50
33	Soya leaves .	Glycine Max. Merr	79-5	6•0	0-5	3-2	••	10-8	0-18	0 • 19	8.0	72	•	••
34	Watercress .	Nasturtium officinale.	89•2	2•9	0-2	2•2	••	5-5	0.29	0-14	4 • 6	35 11	l Loots	 and
			L.,	١						l				anu
1	"Arwa gadda" Banana root .	••	74•3 84•7	1•4	0-1	1.0	1.3	23-6	0.03	0.02	2•2	101	38	Trace
2	Beet root	 Beta vulga-	33 • 8	1.7	0-1	0.8	1.3	13-6	0.03	<001 0 •06	1•1		Trace	40
4	Canna, edible	ris. Canna	75•1	1•4	0-3	0.8		22*4	0.20	0.02	0.8	97	M	
5	Carrot ,	edulis. Daucus	86 • 0	0.9	0-2	1•1	1•2	10-7	0 •08	0.53	1•5	47	2,000	40
6	Colocasia .	Carota. Colocasia esculenta.	73•1	3•0	0-1	1•7]	22:1	0 •04	0 • 14	2.1	101	4,300 40	90
7	"Nulu gadda"		76.8	1.1	0-2	0.5		21-4	0.07	0.02	1.4	92		
8	Oqion,big .	Allium	86.8	1•2	<0-1			11-6		0.05	0.7	51		:
9	Onion, small	Tfc	84•3	1.8	01	0.6		13-2	0.04	0.06	1•2	61	25	> 8 <u>.0</u>
_	<u> </u>	<u> </u>	<u>. </u>	<u> </u>	<u> </u>	<u>' _ </u>	· ·		•		<u> </u>	<u> </u>	<u> </u>	

<u>w</u>	l	ایا	<u> </u>	_					V	alues	per (Ounc	e			J		
9. Nicotinic acid mg. per 100g.	Z Riboffavin	8 Vitamin C mgs. per 100 g.	6 Moisture, 6.	O Protein, g.	2 Fat (Ether extractives), g.	75 Mineral matter, g.	5 Fibre, g.	75 Carbohydrate, g.	Calcium (Ca), mg.	Phomphorus (P), mg.	L Iron (Fe), mg.	S Calorific	65 Carotene (Inthesidae)	0 Vitamin B, p.s.	S Nicotinic acid, mg.	25 Riboflavio, 146.	28 Vitemin C, mg.	Serial number 4
Vege	 etabl	es.—	conto	1. ,		1	<u> </u>			<u> </u>	1		1	1			Ī	
	· · ·	}	23-9	1-7	0-3	0-3		2-2	45	30	2-1	18	1,704	j	m t		m m	20
0-4	120	15	26-4	0-6	<0.1	0-3	0-1	0-9	14	8	0-7	7	625	11	01	34	4	21
			23-2	1-5	01	0-7		2-9	90	23	0-7	18						22
			25-2	10	<0.1	0-6		1-5	50	17	1•0	11						23
		11	23-3	1-7	0-3	0-6		2-5	120	20	5-0	19					3	24
0-4'	80		23-6	1-4	0-2	0-5	0-6	2-3	60	23	4-4	16	767	14	01	23		25
1-4			16-9	20	0-3	10	1-8	6-5	140	23	4-9	37			0-4			26
			16-9	3-3	0-9	0-7	0-6	60	37	54	7-2	45	1,306	17	١]	27
0-5		281	19-4	1-7	0-3	0-9	0-5	5-6	1[10	57	5-1	32	909	11	01		80	28
			22-0	1-4	0-2	0-7		41	1144	17	4-7	24					™ m	29
			24-1	1-4	01	0-7		20	105	31	36	15						_? 0
			25-5	0-9	0-2	0-3		1-4	51	17	2-2	11	1,562]			31
0-5	60	48	260	0-5	0-3	0-4	٠٠.	11	17	3	1-4	9	738 to 994	14	01	17	14	32
••	160		22-6	1-7	0-1	0-9		3-1	51	54	2-3	20	•••			46	••	33
'	٠.,		25-3	0-8	<0.1	0-6		1.6	82	40	1-3	10	••	••			•	34
Tub	ers														ĺ	i		
	••		21-1	0-4	1	0-2		6-7	8		0-6	29			••	•• أ		1
02	48	10	24-0	01	<0.1	· .		3-5	9		0-3	15		Trace	0-1	14	0-3	2
0-4	90	<88	28-8	0-5	<0.1	_	••	3 ·9	57	17			1 'race	"	,0-1	26	<25	3
••	••	130	21-3	0-4	0-1		••		3		0-2	28	Ml	••	.•	;	3-7	4
0-4	20	3	24-4	0-3	<0.1	i i	0.5	30	23		0.4	13	568 to	26	0-1	6	1) T	5
0-4	30	Trace	20-8	0-9	<0.1			6-3	11	40		29	11	26	0-1		ce	6
	••		21-8	0-3		0-1	••	1	20	14	0-4	26	••		·· 0*1	3	"	7
0-4	10	11	24-6		<0.1			3 -3	50 10	14 20		14 17	7	} 23	0*1 0-1	3	} ^s	8 9
0-5	••	••	23-9	0-5	<0.1	0.2	••	3- 7	IO	20	y-3	1/	'_		0.1	·••	ן ין	

TABLES OF

5	•	ČD.	~	0>	m	-	со	N:	~	_ 5	17	16	5	<u> </u>	15	KD	. -	10	- Serial number
"Clip-cho" marrow.	Cauliflower .	Calabash cu- cumber.	Broad beaus	Brioja	Bitter	Bitte- gourd.	t Bourd .	Artichoke .	Amaranth stem.	Yam (ordina- ry).	Yam (elephant)	Tapioca .	Sweet Potato	Radish (white).	Radish(pink)	Potato .	Parships .	"Onthalai- garu".	№ Name of Foodstuff
Sechium edule.	Brassica oleracea botrytis.	Lagenaria siceraria.	Vicia faba	Solanum melongena.	à	Momardica charantia.	Benincasa hispida,	Сурыта всобущия.	Amaranth- us gange- tiem.	Typhoni- um triloba- tum.	Amorpho- phallus camapanu- latus.	Manibot esculenta	Ірошеов Басацая,	Ş	Raphanus'	Solenum tuberosum.	Pastigaca.	Dioscares alata,	∞ Botanical name
92.5	Ş	\$	82.4	91.5	85	92-4	9.0	77.9	92:5		78.7	59.4	○> e p «j «	(0 %	*0 ©	*«1 * >a	≪√J 1₅0 *	00 * *>	Moisture %
© >1	y Ui	⊚ IO	Ui	os os	IO <0	•)	<u>.</u>	(J9 Oi	Q (0	1.	IC	્ય	»•* IO	9,	000	÷	w	IO	tn Protein %
Ģ	°	•	<u>•</u>	O (19	• 0	Ó IO	и_ О	o ^*	O 1-	9	A Q	0	Ç	•	oa.	٠ .	O (A	0.1	• Fat (Ether extractives) %
•	-	0:5	1.0	0.5	1.4	0.8	Q.	ã	1.8	ë	đ	- o 6	•7 6	7 o) (it:	0		Ç I U	→ Mineral matter %
:	:	:	2.0	:	1.7	0.8	:	1.2	10	:	0.0	:	:	:	:	:	1.7	:	os Fibre %
8.9	بن ف	2.9	10.0	6.4	9.8	10	W. io	1 (0) 6	9.5	27-0	10.	96 ******		* *	<u> </u>	(C	29.2	14.0	Carbohydrate %
9. 14	0.03	0.02	8	Q-02	9.05	Q. 82	° S	° S	0.26	6.98	۰ د		ė		8	٠ 0 0	8	ę S	5 Calcium (Ca) %
0:03	90.08	0.01	9	96	0.14	0.07	8	0.10	0.03	0.02			ė	, o	0.8			0.02	£ Phosphorus (P) %
9.0	1:9	0.7		1.9	9.4	20.00	9	*?	1.8	<u>.</u>	9 °	9 S to	9	9	9	9	ě	0.5	Fron (Fe) mg. %
25	IS		8	*	8)	ĨO	Ui	79	~	Ui	. to	Ī	5 E	2	S;	o to	<u>o</u> .	62	Calorific value per 100g.
Trace	2	Trace	:	Ui		0 0	Trace	s	:	0	434	:		<u>_</u>	Ui	\$	8	_• }	Carotene (International & Vitamin A Units per 100g.
:	100	:	8	Si		72	2	225	;	- Other 7:	(d	* *	 S	}	§	100	8	: 1	Vitamin B _x (Xg. per 100g.

<u> </u>	T	ا د	<u> </u>			···			Va	lues	per O	unce	<u></u>			,		'
5. Nicotinic acid mg. per 100 g.	1 Riboffavin p.s. per J	8 Vitamin Cong. per 1-1.	6 Moisture, g.	O Protein, g.	17 Fat (Ether extractives), 8.	22 Mineral matter, g.	23	A Carbohydrate, g.	5 Calcium (Ca), mg.	'Au '(A) snaoddeoga 26	\$6; (°24)	& Calorific value	55 Carotene (International Vitamin A Unita)	30 Vitamin	Nicotinic acid, mg.	35 Riboflavin, Peg.	S: Vitamin C, mg.	34
Tub	ers.–	-con	td.				_	$\overline{ }$		İ	1						1	
	",	••] 23-9	0-3	<0.1	0-1		4-0	3	6	01	18					••	10
0-4		16	20-5	0-4	04	0-3	0-5	6-6	10	10	0*1	29	8	17	04		4	11
1-2	10	17	21-2	0-5	<0.1	0-2		6-5	9	9	0-2	28	1	28	0-3	3	1	12
0-4	h	17	25-7	0-2	04	0-3		2:1	10	6	0-1	10	וֹן		ſ	6	5	13
0-5	<u>ک</u> و کو کا کا کا کا کا کا کا کا کا کا کا کا کا	15	26-8	0-2	<0.1	0-2		1-2	10	8	0-1	6	y 1	17	$\begin{vmatrix} 0-1 & i \\ & & 1 \end{vmatrix}$		4	14
0-7	40	24	188	0-3	0-1	0-3		8-8	6	10	0-2	37	3	23	0-2	111	7	15
0-3	100		16-8	0-2	0-1	0-3		10-9	10	10	0-2	45	••	13	0-1	28		16
0-7	70	Trace	22-3	0-3	<0.1	0-2	0-2	5-2	10	6	0-2	22	123	17	0-2	20	Tra- ce.	17
0-7	ĺ	Trace	19-8	0-4	<0.1	0-5		7-7	20	6	0-4	35,		20	0-2	•	Tra- ce.	18
Veg	etabl 		26.2			05	0-3			_	_						1 1	
		"	26-2	0-3	<0.1	03	0-3	10	74	8	0-5	5	•••	••	••	••	"	1,
	10	Trace	21-9	10	€0∙1	0-5	0-3	4-5	34	30	0-7	22	17	64		3	Tra- ce.	2
0-4	••	1	27-3	04	<0.1	<0.1		0-9	8	6	0-1	4	Trace	18	01	0	<1	8
0-5	90	88	26-2	0-5	01	0-2	0-2	1-2	6	20	0-6	7	ר ז				۱	
 			23-6	0-8	0-3	0-4	0·5	2-8	10	40	2.7	17	560	20	01	26	25	5
0-8'	90	23	25-9	0-4	01	0-1	<i>,.</i>	1-8	60	17	0.4	10	1	13	0-2	26	6	6
0–8	••	12	23-4	1-3	<0.1	0-3	0-6	2-8	14	17	0.5	17	•••	23	0-2		3	7
••	10		27-3	04	<0.1	01		0-8	6	2	0-2	4	Trace	}		3		8
0.9	80 \	66	25-3	10	0 <u>:</u> 1	0-4	 	1-5	6	17	0-4	11	. 11	28	0-3	23	19	9
	••		26-2	0-2	<0-1	01	••	1*8	40	8	0∙2 ,	8	Trace			·••		· 10

Serial number	Name of Foodstuff	Botanical name	• Moisture %	Protein %	o Fat (Ether entractives)%	" Mineral matter %	» Fibre %	to Carbohydrate %	5 Calcium (Ca.) %	% (d) snaopporns II	% 25m (e.g.) wor 12	Calorific value per 100 g.	Carotene (International Vitamin A units per 100 g.)	1. Vitamin B, [48. per 100 g.
11		<u> </u>	<u> </u>	. 	<u> </u>	- 	<u> </u>	- -		<u></u> -	_ 		<u>_</u>	 her
11	Celery stalks	Apium gra- veolens var. dulce.	93-5	0-8	01	0-9	1-2	3-5	003	004	4-8	18	.	
12	Cluster beans	Cyamopsis tetragono- loba.	82-5	3-7	0-2	1-4	2-3	9-9	013	0.05	5-8	56	330	
13	Colocasia stems.	Colocasia csculenta.	93-4	0-3	0-3	1-2	0-6	4-2	0.06	002	0-5	21	;-	
14	Cucumber .	Cucumis sativus.	9fi-4	0-4	01	0-3	••	2-8	001	0.03	1-5	14	Trace	30
15	Double beans	Faba vul- garis.	73-8	8-3	0-3	1-0	4-3	12-3	004	0-14	2-3	85		
16	Drumstick •	Moringa oleifera.	86-9	2-5	0-1	20	4-8	3-7	003	0-11	5-3	26	184	50
17	French beans	Fhaseolus vulgaris.	91-4	1-7	0-1	0-5	1-8	4-5	0*05	003	1-7	26	221	78
18	Ipomoea \ stems.	Ipomoea reptans.	93-7	0-9	02	1-8	••	3-4	008	003	0-8	19		
19	Jack, tender	Artocarpus heterophyllus	84•0 ′.	2-6	0-3	0-9	2-8	9-4	0.03	004	1-7	51		50
20	Jack fruit seeds	Do. •	51-6	66	0-4	1-5	1-5	38-4	0-05	013	1-2	184		
21	''Kandan Kathairi''.	Solanum xanthocar- pum ,	75-5	3-1	0-8	1-6	14-2	4-8	0-10	0.09	1-2	39		
22	"Kovai" fruit, tender.	Goccinia cordifolia.	93·1	1-2	01	0-5	1-6	3-5	004	003	1-4	20	260	••
23	Knol-khol .	Brassica caulorapa.	92-1	1-1	0-2	0-7	••	5-9	002	004	0-4	30	36	50
24	Ladies fingers	Abelmos- chus escu- lentus.	880	2-2	0-2	0-7	1-2	7-7	0.09	0.08	1-5	41	58	63
25	Leeks .	Allium porrum.	78-9	1-8	0-1	0-7	1-3	17-2	0-05	0.07	2-3	77	30	225
26	Mango, green	Mangifera indica.	900	0-7	01	0-4	••	8-8	0-01	0.02	4-5	39	150	40
27	"Nellikai" (amla).	Phyllanthus emblica.	81-2	0-5	01	0-7	3-4	14-1	005	002	1-2	59		30
28	Nut of Avo- cado pear.	Persea drymifolia.	63-7	2-5	0-7	1-1		32.0	002	008	1-2	144		
29	Onion stalks	Allium cepa	87-6	0-9	0-2	08	1-6	8-9	005	0-05	7-5	41		
30	"Parwar" ,	Trichosan- thes dioica.	92-3	20	0-3	0-5	3-0	1-9	0.03	004	1-7	18	!	ļ
31	Peas English	Phum sati- vum.	72-1	7-2	0-1	0-8		19*8	002	008	1-5	109	139	250

FOOD VALUES—contd.

bi		, <u>s</u>] <u></u>						Val	ue pe	r Ou	nce				,		
19 Nicotinic seid mg. per 100 g.	1 Riboflavin per 100 g.	8 Vitamin C mg. per 100 g.	6 Moisture, g.	O Protein, g.	17 Fat (Ether outractives),	55 Mineral matter, g.	23	75 Carbobydrate, g.	Calcium (Ca) mg.	76 Phosphorus (P), mg.	(94) J	S Calorific value	6 Carotene (International Vitamin A units)	itanio B. P. C.	cotinic acid, ng.	Riboflavin, µg.	25 Vitamita C, mg.	4 Scrist number
Vege	etable	es—c	ontd	-	1	1			ĺ				}		_			
"	, ••	6	26-5	0-2	<0.1	0-2	0-3	1.0	8	11	1-4	5	.	••			2	11
		49	23-4	1-1	0.1	0-4	0-7	2-8	37	14	1-6	16	94				14	12
			26-5	01	0.1	0-3	0-2	1-2	17	6	0.1	6						IS
0-2	4	7	27-3	04	<0.1	0-1		8-0	5	8	0-4	4	Trace	8	01	1	2	M
		22	20-9	2-4	0-1	0-3	1-2	3-5	1	40	0-7	29	ļ				6	15
0.2	65	120	24-6	0-7	<0.1	0-6	1-4	1.0	8	30	1-5	7	52	14	04	18	34	16
0-3	59	14	25-9	0-5	<0.1	0-1	0-5	1.3	14	A	0-5	7	63	22	0-1	14	4	17
			26-6	0-3	01	0-5		1.0	23	8	0-3,	5			ļ }			18
0-2			23-8	0-7	0-1	0-3	0-8	2-7	8	11	0-5	14		14	01			19
			14-6	1-9 0-9	0-1	0-4 0-5	0-4 40	10-9 1• 4	14 30	l **	0-3 0-3	52 11		 		 		20
.,		28	26-4	0-3	<0.1	01	0-5	1-0	11	8	0-4	6	74				8	22
0-5	88	85	26:1	0-3	01	0-2		1-7	6	11	0.1	9	10	14	0-1	25	24	23
0-6	60	16	24-9	0-6	0-1	0·2	0-3	2·2	25	23	0-4	12	16	18	0-2	17	4	24
		11	22-4	0-5	<0.1	0.2	0-4	4.9	14	20	0-6	22	8	64		:	3	25
0:2	10	3	25-5	0-2	<01	01		2-5	3	6	1-3	11	43	11	0-1	3	1	26
0-2	••	600	23-0	01	<0.1	0-2	1.0	4.0	14	6	0-3	17		8	01	·	! [70	27
			180	0-7	0-2	0-3		9-1	6	23	0.9	41						28
	30		24-8	0-3	0•1	0-2	0-5	2.5	14 -	14	2•1	12]		9		29
٠. ا	·		26-2	0:1	01	04	0-9	0-5	8	11	0-5	5						30
0·8	10	9	20-4	20	<0.1	0-2		5-6	6	23	0-4	31	39	71	0-2	. 3	3	31

_	 	<u> </u>						 -							
L. Scriel number	Name of foodstuff	to Botanical name	. Moisture %	G. Protein %	9, Fat (Ether extractives) %	4 Mineral mether %	a Fibre %	e Carbohydrate %	Oderium (Ca) %	" Phosphorus (F) %	75 Iron (Fe) E.S. %	13 Calorific value per 100 g.	7 Carotene (Inter	15 Vitemin B, per 100 g.	
	1		1	1.									O	ther	•
32	Pink beans .	Phaseolus vulgari*.	88•5	2•4	0•2	0-6	2•1	6•2	0-04	004	1-2	36		"	ŀ
33	Plantain flower.	Musa sapientum.	90•2	1•5	0 •2	1-2	1•9	5•0	0-03	0.05	0-1	28		50	
34	Plantain, green.	Do.	83•2	1•4	0 •2	0–5	.•	14•7	001	0.03	0-6	66	50	45	ł
35	Plantain, stem	Do.	88•3	0.5	0•1	0–6	0 •8	9•7	001	001	1-1	42	Nil	20	
36	Pumpkin •	Cucurbita maxima.	92•6	1•4	0•1	0–6	.•	5•3	001	003	07	28	84	60	l
37	Rape plant stem.	Brassica napus.	91 •4	3•1	0.1	1-4	•	4•0	010	010	1-2	29		ļ	ļ
38	Rhubarb stalks.	Rheum Rhaponti- cum.	92 • 7	1•1	0 •5	1:1	0	3•7	0-12	001	22	24		Ĭ	
3 9	Ridge gourd	Luffa acu- .angula.	95•4	P•5	0•1	0–3		3•7	004	004	1-6	18	56	66	
40	"SinRhara" or water chest nut.	Trapabis- pinosa.	70 •0 .·	4•7	0•3	1-1	••	23•9	0-02	015	0-8	117	20	50	
41	Snake-gourd	Trichosan thes ang- uina.	94•1	0 •5	0•3	0–7		4•4	0•05	0-02	1-3	22	160	40	
42,	Spinach stalks	Spinacia	93•4	0.9	0.•1	1-8		3-8	0.09	0-02	1-3	20			l
43	''Sundakai'' dry.	Solatium torvum.	12-3	8.•3	1.7	51	17•6	55.0	0-37	018	22-2	269	750		
44	Sword beans .	Canavalia gladiata.	88-6	2.7	0•2	0–6	1.5	6-4 :	0•06	0-04	2-0	38	40	80	ļ
45	"Tinda" ten- der.	Citrullus vulgaris.	92-3	1.7	0-1	0–6	0 4	5•3	0-02	0.03	0-9	29	28		
46	Tomato, green	Lycopersi- con escu- lentum*	92-8	1-9	0-1	0-7	•	4-5	002	0.04	2-4	27	320	ತಿ	
47	Turnip .	Brassica rapa.	91-1	0-5	0–2	0-6		7-6	003	0.04	0-4	34	Trace	40	
48	Vegetable marrow.	Cucurbita pepo.	94-8	0→5	0 1	0–3	••	4-3	<001	003	0-6	20	Trace!		
							٠					N	uts	and	
	Almond ,	Prunus amygdalus.	5–2	20-8	58-9	2-9	1-7	10-5	0-23	0-49	3-5	655	Trace	240	
2	Cashew nut .	Anacardium occidental.	5-9	21-2	46-9	2-4	1-3	22-3	0•05	0-45	50	596	100	630	
3	Coconut ,	Cocos nu- cifera.	36-3	4-5	41.6	1-0	3 - 6	13-0	001	0-24	1-7	444	Trace	45	
4	Gingelly seeds	tsamum indicuin.	5-1	18-3	43-3	5-2	2-9	25-2	1-45	0-57	10*5	564	100	1010	

1 8	 د ۱	4								alues	per O	unce						<u> </u>
16 Nicotinic mg.per 100 g.	2. Riboflavin [Lg. per 100 g.	18	6 Moisture, g.	Protein g.	Pat (Ether extractives), g.	Mineral matter, g.	Fibre. F.	Carbo	Calcium (Ca), mg.	26	(a)	Calorific value	Carotene (Inte. astional) Vitamin A Units)	0 Viramin B ₁ (Ag.	15 Nicotiane acid, mg.	S Riboflavin, µg.	22 Vitamin C, mg.	Serial number
'	etabl	<u> </u>	<u>'</u>		1	1	1	<u> </u>	1 23	1	2/	20	<u> </u>	i <u>30</u>	<u> J </u> 	<u>:</u> 1	1	<u></u> I
		. 28	25-1	 0-7	<0.1	02	0-6	1-8	11	11	0-3	10				ĺ	В	3*
0-6			25-6	0-4	01	0-3	0-5	1-4	8	14	< 0.1	8		14	0-2			33
0-3	20	24	23-6	0-4	04	01		4-2	3	8	0-2	19	14	13	0-1	6	7	34
0-2		¦ 	25.0	01	<0.1	0-2	0-2	2-7	3	3	0-3	12		6	01		'	35
0.5	40	2	26-2	0-4	<0-1	0-2		1-5	3	8	0.2	8	24	17	01	111	"	36
			25-9	0-9	<0.1		l	1-1	30	30	0-3	8						3?
		37	26-3	0-3	01	C	0-3	1-0	30	3	0-6	7					10	38
	40	 	270		١			110	11			_ ا				3		
•	10	••	27-0	01	<0-1	01		1-0	11	111	0-5		16	19	ļ Г		"	39-
0-6		"	19-8	1-3	I 0 - 1	0-3		6-8	6	43	0-2	33	6	14	0-2	ļ		40
0-3	60	Trace	26-7	01	0-1	0-2		1-2	14	6	0-4	6	45	11	0-1	17	 Tra re.	41
		3	26-5	0-3	<0.1	0-5		1:1	25	6	0-4	6			. .	:.	ı	42
••		0	3-5	2-4	0-5	1-4	50	15-6	100	50	6-3	76	213					43"
0-5	••		25.1	0-8	<0.1	0-2	0-4	1-8	17	11	0-6	11	11	23	0-1			44
••	.		26-2	0-5	<0.1	0-2	2	1-5	6	8	0-3	8	8	 ,				45
0-4		3 1	26-3	0-5	<0'-1	0-2		1-3	6	11	0-7	8	91	20	01	17	9	46-
0-5	40	43	25-8	01	01	0-2	••	2-1	8	11	01	10	Trace	11	01	11	12	4?
•• •		18	26-9	0-1	<0·1	0-1	٠.	1-2	3	8	0-2	6	Trace	l	••		5	48
Oil S	Seeds														•			
2-5		٥	1-5	5-9	16-7	10-8	0-5	30	65	140	10	186	Trace	68	0-7]	t
2-1	190	0	1-7	60	13-3	0-7	0-4	6-3	14	130	1-4	169	28	179	0-6	54		2
0-8	100	1	10-3	1-4	11-8	0-3	1•0	3-7	3	68	0-5	126	Trace	13	0-2	28	Tra- ce	3
4.4		0	1-4	5-2	12-2	1-5	B-0	7-1	4 10	160	3-0	160	28	287	1-3			4 .

s. L	ŭ	12	Ξ	0	tO	CD	sj	dV	Oi	•	۵	15	~		=	.	to	Ф	vi	O»	ui		oenai number
Futt and — of vegetable origin	"Kandanthip- pilli".	Glager	Carlic	Fenugreek reeds	Cumin	Corjander .	Cloves, g	Clora, 7	Chillia, *	Chillies,	Cardamom .	Assioctida .	"Aristhippili"	•	Walbut .	Pistachio nut	Oyster out .	Mustard seeds	Linserd seeds	Groundnut,	Groundnut .		Name of foodstuff
of vegetable of	Piper rox- burghii.	Zingiber officinale.	Allium	Trigonella focenum- graecum-	Cuminum cyminum,	Coriandrum sativum.	Do.	Syzygium aromaticum	Do.	Capsicum frutescens,	Elettaria cardamo- mum.	Ferula focticla	Piper clusii	•	Jugians regia.	Pistacia vera	Telfairea pedata.	Brasica campestris,	Linuous 7	D ₀ .	Arachis hypogea.		⇔ BotanicTa! name
9.74 1.04 1.04	to to	8	3 ∞	18· 7	Z	11 to	3	Ş	© •	g en	S	en o	Pa	_	<u>*</u>	en en	‡	00 U i	en	4* Ö	to		► Moisture %
erived f	on ÷	2-3	en •	26-2	18.7	14-1	2-3	5-2	15-9	2-9	10-2	4-0	13-2	•	- 15 en	19-8	29-7	ZZ-0	20-3	31-5	%		Protein %
derived from ninceds,	\$3 \$3	© • 10	© •	ri Ti	иі 0	I ∂.	ui. tb	∞ tb	cn to	© •n	10 io	Ţ	4.7		S	S	S	39.7	37-1	39.8	5 -1		♣ Fat (Ether extractives) %
	*	"	1.0	30	5-8	4-4	2-2	5-2	6-1	1-0	5-4	v ₁ 6	6-0		1-8	2-8	2-6	ŧô	to	2-3	1-9		^) Mineral matter %
cha., aute	00	to A.	• •	VI IO	o.₫	%	:	to	g	άn	ģ	<u>+</u>	U i to		io	to	m •	00	4^ 00	oa –	oa —		∞ Fibre %
in gene	65-8	12-3	29-0	44-1	36-6	21-6	24-1	47-9	31-6	6:1	42·1	67-8	58-4		11-0	16-2	:	23-8	28-8	19-3	20-3	•	Carbohydrate %
general devoid	1-23	0-02	0.03	016	- 8	0-63	0-31	0-74	016	003	0-13	0-69	o ft		0-10	0-14	<001	0-49	017	0.05	0-05		3 Calcium (Ca) %
8	O M to	8	oa O	o. 67	• .	O oa vi	°. S	© ©	o- 37	° S	o en	° S	- S			o.	O Ui V	0.70	٥. من	•	e c. o		C Phosphorus (P) %
carotene	?	f en	T	¥:1	M 0	v O	K0 ^*	4.9	io oa	^> to	9	22.2	19-5		4-8	13.7	<u>+</u> :	vj 9	10		ō		5 Iron (Fe) mg. %
Ï	(C)	3	io	333	356	2	159	S	246	£	В	§	S		687	226	88	S	8	S	548	Z	S Calorific value per 100 g.
vitamin	:	S	0	091	870	1,570	120	<u>:</u>	576	454	:	:	:	ime	5	- 24 - 5	:	270	8	:	3		,- Carotene (International *• Vitamin A units per 100 g.
₽	<u>:</u>	:	:	:	•	:	:	:	:	:	:	:	:	_ 2	8	670	:	8	:	:	8		rt Vitamin B _x (Xg. per 100 g.

FOOD VALUES—contd.

100	 .	8	 						,	Value	s p	er (Ounce					<u> </u>
16 Southic acid mg. per 100g.	1. Riboflavin pg. per 100 g.	8 Vitamin Cang. per 100	61 Moš mire, g.	20 Frotein, g.	12 Fat (Esher extractives), S.	55 Mineral matter, g.	23	Carbohydrate, g.	52 Calcium (C), mg.	26 Phosphorus (P), mg.	Z Iron (Fc), mg.	28 Calorific value	6 S. tamin A Unital	00 	Nicotinic T	S Siboffavin, t.f.	S Vitamin C, mag.	8 Serial number
Oil	Seed	s—co	ontd.	,						Ì								
14-1	! 300	0	2-2	7-6	11-3	0-5	0-9	5-8	14	110	0-5	156	18	256	40	85		5
•-			14	8-9	11-3	0-7	0-9	5-5	14	120	01	159		٠.				6
		0	1-9	5-8	10-5	10-7	1-4	8-2	48	100	0-8	151	14					7
40		Trace	2-4	6-2	11-2	1-2	0-5	6-7	140	200	5-1	151	77	185	11		Tra- ce.	8
			1-2	8*4	17-9	0-7			3	160	1-2	196						9
1-4		0	1-6	5-6	15-1	0-8	0-6	4-6	40	120	3-9	178	68	190	0-4	••		10
1-6	. .	0	1-3	4-4	18-3	1 10-5 	0-7	31	30	110	1-4	195	8	128	0-5			11
Spice	es, et	c.	i					<u> </u> .				,			, ,			
"	••	0	3-6	3-7	1-3	1-7	J-5	16-5	130	80	3-8	93 1	••	••		••		1
••	••	0	4-5	1-1	0-3	20	1-2	19.2	190	14	6-3	84		••				2
"		0	5-7	2-9	0-6	1 5	5-7	11.9	37	450	1-4	65	••	••				3.
0-5	180	111	23-4	0-8	0-2	0-3	1-9	1-7	8	23	0-3	12	128	••	0-1	51	31	4
· • •		50	2-8	4-5	1-8	1-7	8-6	9-0	45	100	0-7	70	16				14	5
	••	0	66	1-5	2-5	1-5	2-7	13-6	210	30	1-4	83						6
			18-6	0-7	i-7	0-6		6-8	88	11	0-6	45	34	••		••		7
1-1	350	Trace	3-2	40	4-6	1-2	9-3	61	180	100	54	82	445	••	0-3	99	Tra- ce.	8
2-6		9	3-4	5-3	4''3	1-6	3-4	10 • 3	300	140	8-8	101	247		0-7		1	9
1-1	••	0	3-9	7-4	1-6	0-9	20	12-5	45	100	40	95	45		3 0-3	. 		10
0-4		13	17-8	1-8	≼ :0-l	0-3	0-2	8-2	В	90	0-4	40		••	0-1		4	11
0-6	••	6	22-9	0-7	0-3	0-3	0-7	3-5	6	17	0-7	19	19	••	0-2		2	12
	••	•0	3-5	1-8	0-7	1-4	2-4	18-61	350	54	17-6	88					••	13

Fats and oils of vegetable origin derived from oilseeds, etc., are in general devoid of carotene and vitamin A. Red palm oil is an exception ($see\ p.\ 3$).

Ħ	
뎔	
EES	
_	
) F	

*_	10	•	60	7	•	tu:	*	6	Ю	~	;	23	12	엄	28	19	00	– vj	16	15	7		_ Serial number
Grapes (Blue variety)	Figs	Durain, *	Dates ?	Cashew fruit	Cape goose- berry.	Bullock's heart	Bread fruit .	Bilimbi .	Banana .	Apple · ·		Tumeric	Tamarind,	Pepper, ?-	Pepper, 1	Omen	Nutmer, t	Nutmeg .	Mustard .	Mace .	Lime perl		to Name of foodstuff
Vitis labru- acana vinifiera.	Figus carica	Durio zibe- thinus.	Phoenix dactylifera	Anacardium occidentale	Physalis ; cruviana.	Anona re-	Artocaspus ajsilis.	Averrhos.	Muss per-	Malus sylvestrius.		Curcuma domestica.	Tamarindus indica.	· D	Piper nigrum	Trachysper-	, Do	Myristica Fragrams	Brastica juncea,	Myristica fragrama.	Citrus medica var acida.		<« Botañical name
85-5	8-08	ş	ā	87∙ ∘	%	76.8	79.5	93.9	?	8		19-1	20.9	\$\$	₹	ç to	%	14. ∞	æ	15.9	66:5		* Moisture %
0.8	1.9	2.8	9.0	0.2	1.8	-		0.5	Т	9		6.0	w	H-	*	*	6	7.5	23 0	6.5	1.8		Protein %
9.	0.2	9.9	0.20	9	0.2	2.0	, ,	o to	o io	0 >1		oi	÷	o> do	to Ci	00	•	¥.	99.7	24.4	0:5		Fat (Ether extractives) %
0.4	9.0	1.2	J.3	0.2	0 0	9.7	• •	9 0	0 <c < td=""><td>0.3</td><td></td><td>co cs</td><td>2.9</td><td>*</td><td><u>.</u></td><td>7:1</td><td>0.6</td><td>1.7</td><td>4.2</td><td>1.6</td><td></td><td></td><td>** Mineral matter %</td></c <>	0.3		co cs	2.9	*	<u>.</u>	7:1	0.6	1.7	4.2	1.6			** Mineral matter %
s-0	:	:	2:	:	3.2	;	:	0;	:	:		29.61	5 6	14.9	:	11.9	:	11.6		مب خه	:		•Fibre %
10.2	17-1	¥	5.	5 .	- -		\$ 5	j .	36.4	13.4		9.	67.4	5.	27.5	86	11-2	28-5	29.6	47-8	29.4		⇔ Carbohydrate %
0.03	0.08	V 0.0	0.07	9.0	9 6		2 (A A	A O O	10-02		9.15	0.17	9 45	0.27	- ft	o £	0-12	9	0.18	0.71		5 Calcium (Ca) %
98	99	0	0.08	10.0	9	\$	2 8) 0	ρ	ρ		0.28	9-1	Q. 28	97	q S	ρ 2	0.24	9	9 6	6		£ Phosphorus (P) %
0 •\k	N- I	H- O C	10.6	2.0	. Î		9 3	9 9	0	N-		0		9 00	≫ Ω 4k	14-6	22-0	+ 6	17.3	1 2	2.7	_	io Iron (Fe) mg. %
*	●75	183	295	đ	3 6	;	₽_;	3 5	3	a		I	8	8	S	379	8	ş	1	Ē Š	129	ò	^ Calorific value per 100 g.
5	270	<u> </u>	, §	:	:		Trance	= «	r	Ттасс		٤	5	;	680	:	•	Тласе	2	3 :	:	Condiment	£ Vitamin A units per 100 g
8	:	:	8	:	:	:	:	:	2	8	a	;	:	:	:		:	:	:	-:	:		£ Vitamin B, (ILg per 100 g.

FOOD VALUES—contd.

		ี ถ			_													<u>. </u>
8	1	0	i		1 4				Valu	es per	Ounce					1		
icotinic sold mg. per 100 g.	S I god H	18 Vitamin C mg. per 100		70 Protein, 8:	2 Pat (Ether entractives), g.	55 Mineral mattor, g.	22 Fibre, g.	A Carbobydrate, g.	52 Calcium (Ca.), mg.	Photphorus (P) mg.	Zico (Fe), rog.	S Calorific value	Chrosene (Light Unity at	S Vitamin B, i.s.	31)	S Ribodavia, ing.	22 Vitamin C, zing.	Serial number
' Sp	ices,	etc.	—coı	ntd.	1								-	; 	-			
ļ	:	۱	18-8	0-5	01	0-5		8.3	200	17	0-8	37						14
		0	4-5	1-8	6-9	0-5	1-1	13-5	50	30	3-6	124						15
4-0	75	Trac	e 2-4	6.2	11-2	1-2	0-5	6-7	140	200	5-1	154	77		1-1	21	Trace	16
"		0	4-1	2*1	10-3	0-5	3-3	8.1	34	68	1.3	134	Trace					17
"	"	"	24-6	0-3	01	0-2		3-2	11	3	0-6	15	. 2		"			18
] "	j "] "	2-5	4-4	5-1	2-0	3-4	10-9	400	85	4-1	108]	"			"	19
0-2			18-0	1.4	0-8	0-5		7-7	70	20	0-7	43	193		0-1			20
1*4 0-7	"		3-7	3-3	1-9	1-2	4-2	140	130	57	V8	87	••		0-4	••		21
23	Trace	3	5-9 3-7	0-9 1-8	<0-1	0-8	1-6 0-7	19-7	48 43	31 80	31 5-3	99	28	'' 	02	ra-	1	22
	IIIac				1-4	10	0-7	15-7	~	"			"	"	0.7	ce		23
its																		,
0-2	30	2	24-3	0-1	<0.1	0-1		3-8	8	6	0-5	16	Trace	33	01	9	1	1
0-3	30	1	17-4	0*4	0.1	0-2		10-3	3	14	0-1	43	Trace	43	0-1	9	<1	2
		"	27-6	01	0-1		0-1	1-4	3	3	0-1	7	68	••	••	••	••	3
"	••	••	22-5	0-4 0-4	01	0-3	"	51 5-9	11	8	01	22	4 Trace	••	••	•-	••	4
		49	21-8	0-4	0-1 0-1	0-2	0.9	3*3	3	17	0-2 0-5	26 16	••			•••	14	5 6
			24-9	01	<0.1	0-1		3-3	3	3	0-1	14						7
0-8	30	T _{race}	7-4	0-9	0-1	0-4	0.6	19-1	20	23	3-0	80	170	26	02		Trace	8
			16-4	0-8	1-1	0-3		9-7	3	14	0-3	52	6			••	;.	9
0-6	50	2	25-5	0-4	0-1	0-2		4-8	17	В	0-3	21	77		0-2	14	1	10
0-3	10	3	24-2	0*2	<0.1	0-1	0.9	2-9	8	6	0-1	13	4	11	0-1	. 3	1	11

Y.T
BLE
ES C
¥

_s	£	27	26	25	10	29	В	to.	, 8°	19	8	17	16	15	=	5	ži	— Serial number
Orange	ozion, water	Mangosteen .	Mango, "Ankola".	Mango, ripe .	Mango, green	Loquat .	Lime	Lemon	if .se	ÎN.	"Karwanda,"	Jambu fruit .	Jack fruit .	Guava, hill .	I coun-	(Marsh's toedless).	11	Name of foodstuff
Citrus aurantium.	vulgaris.	Į.	9	9	Mangifora indica.	Eriobotrya japonica.	Citrus aurantifo- lia.	Citrus limon.	Pithecolo- bium dulce	Vaccinium Leschena- ulta.	Carrie carandes.	Syzigium Cuminii.	Artocarpus heterophy- lius,	Pridium cattelia- num.	Pridium guajava.	Ď	Citrus para-	₩ Botanical name
87·0	95.7	84.9	8 to	86:	90.0	87-4	9.48	85.0	8.9	79.5	18.2	78.2	77-2	85.8	76-1	88.5	92.0	♣ Moisture %
900	0	ρ		o)	0.7	0.7	m m	- i è	2.6	9.0	2.3	0.7	. i.e	0:1	oi	1.0	0.7	"• Protein %
0.9	0.2	2	٠.	©	2	0.8	1.0	0.9	6.0	0.6	. o	0:1	• :	0.8	0.2	0:1	6	• Fat (Ether extractives) %
9	0.2	0.5	٠	©	9.	ç	0.7	0·8	0:4	0.5	2.0	•	0.8	9.0	0.8	• •	©	^ Mineral matter %
:	:	:	:	Ξ	:	9	dio	7	:	7.3	:	6.0	1 .	co	6.9	:	:	» Fibre %
10-6	8.	14.3	13 Ui	11.00	8.	10.2	10-9	∵:	15.9	11.5	67 · 1	19-7	18-9	<u></u>	1+:5	10.0	7.	vo Carbohydrate %
0.05	×0.0	0.01	Ī	Ī	0.01	9	0.09	0.07	0.01	0.02	0.16	0.02	0.02	0.05	0.0	Q	0	5 Calcium (Ca) %
9	0.01	e 8	92	° 8	93	Q. 82	0.02	0-01	0.04	10.01	0.06	0.01	÷ 68	0.08	• • • • • • • • • • • • • • • • • • •	۰ 2	° S	r Phosphorus (P) %
0.1	0.2	0.2	0 01	o W	÷:	0.7	0.9	29.58	• <u></u>		39-1	1.0	0.9	1.2	1.0	0.0	, O. 28	5 Iron (Fe) mg. %
\$	17	8	æ	8	3	\$	59	57	73	뚕	2	S	g	8	8		, %	~ Calorific value per lOOg.
\$50	Trace	.:	1,860	4,800	156	:	26	Trace	:	S	:	, :	540	Trace	Trace	:	:	^ Carotene (International * Vitamin A units per 100 g.)
120	20	:	:	\$:	:	(Jur'8	Quice)	:	:	:	:	8	:	8) 120 	£ Vitamin B _x (i-K- per 100 g.

1"		tió		<u>.</u> 1	_						T 7-	dues	ner	One	<u>ce</u>			_					
	8	100 g.	Der 100 e.	-				1	<u></u>	$\overline{\top}$	<u> </u>	nues	per	Oun		1	귤	_	_		- 1		· -
		2 Ribostavia p.g. per	- Vitemin C me. per		5 Mobiture, g.	& Protein, g.	Pat (Biber extractives).e.	7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		anner a		Celcium (Ca), mg.	26 Phosphorus (P), mg.	Z Iron (Fe) me		Calorific value	o Vitamin A Units)	& Vitamin B, µg.	S Nicosinia and	T recoverate secto, mg.	S Riboffavin, µg.	se Vitamin C, mg.	+ Serial number
it	s	—c	ont	d.																	_		_
	ر { د.	20	(Jui	ice	1.6	0.2			.1		.0	6	6	0-	1	9		} }	0-	1	6 (J	9 wice	12
			•	"	''. 	0.3	<01	0-	1 .	2-	8	8	8	0+	1	19		j					l y
0.		30	299		·-3	0.4	0-1	0-	2 2-(4-	1	3	11	0-	s 1	19 7	race	8	0-1		9	85.	14
0.:	ا * حا	"	15	24	.2	<0·1	0-1	0-	2 1-4	2-	3	14	6	0-:	9 1	1 T.	race	••	0-1	١ .	$\cdot \mid$	4	15
0.4	•	•-	10	21	.g	0∙5	<01	0-2	2 0-3	5-4	4	6 I	8	0 -i	١	4	153	8	0-1	٠		8	16
"	•	••	••	22	·2	0-2	<0-I	01	0-3	5-(6	6	3	0.5	2	4	··		, ••	.	.		17
	.			5	.2	0.7	2-7	0-8	3	19-() 4	5 1	17	11-1	ΙΦ	9				.	. .		18
"	'	•-	••	22	5	0-2	0-2	0-1	21	3-3	İ	6	3	0-4	1	В	23		••		٠ .		19
"	.	'	••	22	9	0-7	0-1	0-1		4-5	5	3	u	0.1	22	2 .	.		••		٠ ٠		2 ₀
0·1 (Juic	e)	4 (Jι	39 1ice)	24.		0.3	0-3	0-1	0-5	3-1	20)	3	0-7	16	Tra	ice	6	<0-1	1	(Jui		21
0-1 Juice) 	• (Ju 	63 iice)	24-0		0-4	0-3	0-2	0-4	3-1	25	1	6	0-1	17		7	6	<0-1		Jui (Jui		12
٠	"	1	"	24-8	3	0.2	01	01	0-3	2-9	8	1	5	0.2	13	"	. .	$\cdot $	••		-	. 2	23
	30		3	25-5	•	0-2	<0-1	0-1		2-5	3	6		1.3	11	4	s	$\cdot $		9	1	2	4
0-3	50	` 	13	24-4	()· 2 .	<0-I	01	0-3	3-3	3	6	1)·1	14	136	3 11	ن ۱)-1	14	4	2	5
"	••	1	24 ∫	24 · 3	0	.3 <	(0-1 	0-1	i i	3 - 6	3	i 6	1)-1	16	52	•	1		••	2	20	3 .
•	••	.	.	24 · 1	0	·1 <	:0-1	0-1		4-1	3	6	0)·1	17	••					••	27	,
0-2	••		ı :	27 · 1	0	.1	0.1	0-1		1-1	8	3	0	-1	5	Trace	6	0	1		<1	28	•
).3 uice)	60	 6: 	8 s	24-9	0	. 3	0.1	0-1		3.1	14	6	<0	.1	14	99	34			17	19	29	•
4	-3 1	Hea	lth		·	•	1					<u>-</u>	_			_				<u>'</u>			

7	
88	
Ä	

1 \$	\$	ts.	<u>*</u>	8_	<u>&</u>	8	37	. 8	ę,	2	4	32	91	병	- Serial number
it II- I	Plan - bill	Plan Mordi-	Pine .	Региппоп .	Foo cado	Peacs, English	Pears, country	Peachos	Passion fruit	Papayya, ripe	"Pannir koyya" or Rose apple.	Palmyra fruit, tender.	Orange •	Orange, ington val.	¹⁰ Name o foodstuff
Musa rub	ģ	Muss para- disiaca.	Ananas	Diogpyros kaka.	Person ame- ricana.	Pyrus Ach-	till par	Amygdalia persica.	Pasifora edulis	Carica Japaya.	Syzygium jambos.	Boragus flabellifer	ģ	Citrus aurantium.	Botanical name
74-1	79.9	73.4	86 :5	79-6	73:6	- 8 	86.9	1:06	76-9	89-6	89-1	92.7	8.96 9.06	8	Moisture %
1.6	1.2	1:1	0.6	0.8	1-7	0.9	0.2	ij.	6.0	- 0.5	0.7	0.6	9.0	0.7	₩ Protein %
0:	1.0	9.	40.1	0.2	22.8	0.20	0.1	0.2	<u>•</u>	0.1	0.2	6 0·1	0:1	<u>•</u>	Fat (Ether extractives)less %
0.8	о. В.	0-7	9.5	€.	1.1	0,2	0.9	9.0	0.7	0.4	0.9	0.2	0.3	0:3	^ Mineral matter %
:	:	:	0-8	:	:	:	1. 0	:_	:	:	:	• -	:	:	⁰³ Fibre %
23.4	18.0	24.7	12-0	19.0	8.0	12.9	11.5	7.6	22-0	9.5	9.7	6-5	8.2	9.1	Carbohydrate %
0.01	10-01	10.0	0.02	10.0	10.0	10.0	10.0	0. 0.	6.0	0.01	10.0	<0.01	0.02	0.02	S Calcium (Ca) %
0.02	•	0.0	10·0	10.0	98	\$ \$	9.9	9.		10.0	0.03	0.02	0.20	o-82	i Phosphorus (P) %
0-6	0.3	0.5	0-9	0.9	0.7		0.7	1.7	2.0	0.4	0.5	0.5	0,2	0.2	J3 Iron (Fe) mg. %
5	78	104	8	22	k) 15	57	4 7	8	8	\$	ŧ	28	8	. .	£ orific value per 100. g.
В	S	124	8	1,710	:	8	*	Trace	- 8	2,020	:	:	:	:	H- Carotene (International *" Vitamin A units per 100 g.)
:	:	8	:	:	:	8	8	8	:	8	:	:	:	: I?	£ Vitamin B _x Jig. per 100 g.

· · :		:	r	r	: -	o re	0-2	0-2	:	o to	I	:	:	· ?	3! Nicotinic acid mg. per 100
	;	170	120	i	:	I	8	-	:	250	ะ	ď	:	- i	5 Riboflavin (Xg. per 100 g.
:	to	o>	2	i	м ba	:	H		:	\$:	4.	:	· 1 d	Vitamin C mg. per 100 g.
21-0	22-6	20-8	24-5	22-6	20-9	24-3	24-7	25-6	21-6	25-4	25-3	26-3	25-7	25-5	Moisture, g.
0-5	٠ •	0-3	0-2	0-2	0-5	o w	<u>.</u>	0-4	0-3	0-1	0-2	0-2	o to	o to	g Protein, g.
<u>A</u>	I-0 >	A ©	A o		6-8	3	A o i	©	A <u>Q</u>	<u> </u>	0,	^0 1	A	A 2	•2 Fat (Ether extractives), g.
© 10	o to	© to	0-1	0-1	0-3	0-1	0-1	0-2	o to	<u></u>	0	0	0-1	0-1	g Mineral matter, less g.
I	I	!	©	:	:	I	0-3	:	:	:	:	:	I	:	g Fibre, g*.
oS	5-1	6	3-4	5-4	0-2	3-7	3-3	Z-I	io •	2-7	XI	1-8	to ba	Z-6	§ Carbohydrate, g.
ba	ba	ba	0>	ba	ba	ba	ba	ba	ba	oa	ba	ba	0)	Oi	8 Calcium (Ca), mg.
0>	00	00	ba	ba	23	0)	ba	00	XJ	ba	00	0>	0	< <i>J</i> >	£ Phosphorus (P), mg.
o IO	0	p	0-3	0-1	0-2	o to	02	0-5	O O)	0-1	0-1	o.		ō	^ Iron (Fe), mg.
13	B	g	7	13	©	1 ∂	5	=		=	Jō	00	<u></u>	Ħ	66 Calorifie value
s	· s	S	17	485	:	ts	•	Trace	8	573	:	:	:	:	Carotene (International S Vitamin A Units)
:	;	S	:	:	:	bi	en	0>	:	=	:	:	1	:	Vitamify B _t (Ag.
:	:	9	i	. :	:	0,1	2	3	*	• ·	:	r	:	:	Jf Nicotinic acid, mg.
:	:	£	S	:	:	:	to	ba	:	x1	5:	• *	:	:	£-Riboflavin, (Jig.
		to	5	· ;	4.	:	r	A	i	i— ba	:	-	:	:	#5 Vitamin C, mg.
$-\frac{1}{t}$	w	ft	4-	*	@	%	97	el -	S	*	£	\$	ba	6	≰ Serial number

TABLES	
엵	

8	&	57	5	55	*	દ્વ	ž,	<u>u</u>	30	\$	8	47	å	£	I » Serial number
Zisyphus	Tamacind, pulp.	t	''Vikki Paz-, ham'' or wild olive.	Tree tomato	Торваю, гіре	"Thavittu Pas- ham".	Strawberry	"Seetha Paz- ham" or cus. tard apple	Raisins (pre-	Radish fruit .	Quince	Pumeloc	Pomegranate	Plums (i	Name of foodstuff
Zisyphus mauritians.	Tamerindus indicus	Limonia acidimima.	Eleocarpus oblongus	Cyphoman- dra betaces.	Lycopeni- cum escu- lentum.	Rhodomyr- tus tomen- tosa.	Fragaria vesca.	Anona squa- mosa.	A vioi-	Raphanus	Cyclonia oblonga.	Oirus maxima.	Punica granatum.	Prunus do-	⇔ Botanical name
6. 0	20.9	6 9·5	8.	82.7	94:5	6.59	87.8	73.5	3.81	91-2	85.7	0.88	78.0	89.8	➤ Moisture %
0.8	مِب ت	7.9		1.5	:	0.6	0.7	<u>.</u>	2.0	2.3	0.8	0.6	1.6	0.7	□ Protein %
9	9	0.6	9	0.2	1.0	0.2	0.2	0.3	0.2	0.3	70,1	√0 -1	9 <u>.</u>	0.2	o> Fat (Ether extractives) %
0.	19	1.9	6.0	=	0.5	0.4	0.4	0.7	2.0	0.8	0.9	0.5	0.7	0.	^ Mineral matter %
	5-6	5.2	:	4. 2	:	:	3	:	:	:	1.7	© •	oi <u>-</u>	:	∞ Fibre %
12.8	67:4	15.5	33-7	10.3	6.5	14-9	9.8	29-9	77.3	5.4	11.0	10.2	14:6	6.9	Carbohydrate, %
0.03	0-17	0.13	10.0	0.01	0.01	0.04	0.03	ç. 23	0.10	0.06	10.01	0.03	0.01	o.02	Calcium (Ca) %
0.03	0.11	0:11	8	0.03	0.02	0.02	0.03	ç. 2	0.08	0-10	0.02	0.03	0.07	0.02	- Phosphorus (P) %
0.00	10.9	9.6	29.0	0.7	0.1				*	69 F4	0.4	0:1	0.3	0.5	S Iron(Fe)mg.%
S	283	97	141	t	22	\$	#	8	\$19	*	\$	#	8	\$	5 Calorific value per 100 g.
8	•8	:	:	540	320	74	. :	Trace	•	:	:	200	•	250	Carotene (International & Vitamin A units per 100 g.)
:	8	;	:	:	120	:	8	:	8	:	:	8	:	120	ن Vitamin B _x {Ag. per 100 g.

					<u> </u>									=	
r	·•	:	:	:	. 04	:	0-Z	:	0-5	•	:	© R	:	© \$	Nicotinic acid mg. per 100
:	:	170	:	:	S	:	r	:	:	I w	:	:	100	2 6	^ Riboflavin (Xg. per 100 g.
r	oa	:	:	g g	3 2	:	52	i	Trace	:	5	28	*		l\$ Vitamin C mg. per 100 g.
24*3	5-9	19-7	181	23-4	26-8	23-8	24-9	20-8	5-2	25-9	24-3	24-9	ZZ-I	25-5	£ Moisture, g.
o to	0.9	2:1	0-4	0 •^	O oa	0-2	0-2	0-5	96	o VI	0-1	o tb	0-5	o to	g Protein, g.
A Q.	A ©	0-2	A o -	0	<01	0:1	0-1	0-1	0-1	0	Å o	A o	A o	0	u Fat (Ether extractives), ft-
<u>.</u>	0.8	o Ůi	o oa	o oa	0.4	9	0-1	0 6	0-6	o tb	0-1	0:1	o to	0	J2 Mineral matter, g.
:	o⊳	1-5	;	1-2	:	:	Q oa	:	:	'•	Q Ui	© to	9	: -	to oa Fibre, R.
oa o>	19-1	4-4	9-6	to •	j	4-2	2-8	6-8	to o	1-5	3-4	to io	4-1	2-5	ją Carbohydrate, g.
00	&	oa	09	oa	oa	11	00	Oi	S	20	0»	00	oa	at	5 Calcium (Ca), mg.
ω	oa P	oa L	- 0>	00	0>	6	00	z	12	22	ф	00	S	0)	to o» Phosphorus (P), mg.
O to	3-1	0-2	o oS	0-2	<u>•</u>	03	0-5	A 9	1:1	8-0	0	A M	0	0	tilron (Fe), mg.
≅	8	28	•	14	6	5 0	či	<u>S</u> .		6	¥	12	03	11	68 Calorific value
8	28	:	:	153	16	ю	;	Trace	:	:	:	m vi	:	g	\$5 Carotene ^International Vitamin A Units)
:	57	:	÷	;	S		ω	:	7	;	;	00	:	*	Vitamin "B, mg.
:	0-2	:	•	:	<u>•</u>	÷	©.	:	0	:	;	0-1		91	- Nicotinic acid, (Xg.
٠.	:	9 1 00	:	:	17	÷	:	•	;	:	;	:	8	و	8 Riboflavin, [I?.
11.	-	:	:	Trace,	α	:	ū !	:	ľ	: _	03	en	m	A	«S Vitamin C, mg.
S	4	55	8	a	S	S	Ui to	U i	8	S	&	17	&	\$	% Serial number

تب
Σ
Ë
Ş
읶

8	24	!	12	Ħ	2	8	19	18	17	16	15	_ _	19	5 5	Ξ	10	9	œ	4	6	, U1	4	Ç.	100	_	}	™ Serial number
Sardines (Sardinella fim- brista).	Pomírets (Stromatcus)	(Sugrador)	Cat Figh	Shark	Rangoli	Singhada (Acius dusumieri).	Ghol (scioene miles)	Surmal (Cybium kuhlii)	Kajura (Lates caleri- fer).	Fow! (Gallus ben- kiva murghi).	Pigeon (Columba Livia intermedia).	Duck (Anse platyrhy- ncha.)	Snail—biq. (Pitta Globosa)	Snail—genall (Viviparus bengalensia typica).	Prawn (muscle)	Pork (muscle) .	Mutton (muscle)	Liver, sheep	Fish "Vajra" .	Figh (Man galore, small fish).	Figh (Mangalore, big fish)	Egg, ben	Egg, duck	Crab (muscle) .	Beef (muscle) .		Name of foodstuff
78-1	78-5		77.1	72.8	6.6 6	61 • 0	69.7	63.0	79-4	72.2	70-4	72.3	74-1	78-9	77-9	77-4	71.5	70-4	79.4	77-9	8	73 - 7	71.0	83·5	74.9		∞ Moisture %
21.0	19-1		21:4	21.9	16-9	20.9	18.4	19.9	12:6	25-9	29.9	21.6	10-5	12.6	20:8	18-7	16:5	19:3	19.9	21.5	22:6	19.9	19.5	8.9	22.6	-	Protein %
<u>:</u>	:		:	:	ند ت	<u>.</u>	0.9	_ 	0.4	9.0	4.9	*	0.6	0 1:0	0.3	+ +	19.3	7.5	÷	<u>.</u>	9.0	13-3	13.7	Ξ	2.6		□ Fat (Ether extractives) %
:	:		:	:	:	:_	:	:	:	1.9	1÷	<u>ب</u>	12		1.4	1.0	1.3	1.5	1.4	2.0	8.0	-i-	-i	39.20	1.0	Ì	o Mineral matter %
:	_:		:	:	:	<u>:</u>	:	<u>:</u>	:_	:	<u>:</u>	. :	_:	:	;	:	;	;	:	:	:	:	;	:	:		v, Fibre %
<u>:</u>	<u>:</u>		:	:_	:	_:	<u>:</u>	:	:	:	<u>:</u>	:	12.4	3.7	:	:	:	1.4	:	:	:	:	0.7	w	:		⁰⁰ Carbohydrate %
<u>S</u>	9 8	_	o 2	9 8	o 3	0.10	8	8	99	80.0	10.0	<u>ې</u> 8		Ţ	909	0.03	0.15	o01	\$	9	©.	o g	o 5	ż• 37	°-01		[™] Calcium (Ca) %
0.36	0.29		o 23	027	<u>°</u>	0.15	0.15	0.16	98 98	0.25	0.29	9	9	9	9	0-20	0.15	ŝ	o [;]	£	ś	°.	° .′	· .°	ŝ		3 Phosphorus (P) %
10 UI	9 00		:	:	1.8	- do	ro ~	ил 6	io	<u>:</u>	:	:	:	:	0.8	ćo	N	6.	۱۰ ۱۰	N	Ó	N	60	21.z	00		^ Iron (Fe) m?. %
g	76		8	5	78_	<u>=</u>	S	JS	2	100	188.	130	97	7	8	- 14	- 9	รี	3	§	2	173	180	59	114		Calorific value per 100 g.
:	:		: :	;	:	:	:	:	:	;	:	:	:	:	Trace	Тинсе	91	22.ECC	<u> </u>	26		1,200	1,200	ŀ	₹		rr Vitamin A (International units per 100 g.)
:	:		: :	:	:	:	;	:	:	:	:	:	:	:	Trace	Trace	Trace	•	<u> </u>	•		ĺ	'n	:	H	,	Carotene (International Vitamin A units per 100 g.
:	:		:	:	:	:	. :	:	:	:	;	:	:	:	6 2	540	i	i	^			5	Si	:	150	7	Vitamin B ₁ Jtg. per 100 g.
IQ O	IO 6:		IO Ui	M Üi	;	:	:	;	. :	•	:	:	;	:	#: 8	22:00	8.9	17(0)		!O° 6		Q			6.4	lesh	

:	s	:	:	•			:	:	:	:	:	:	:	:	100	8	270	700		:	:	:	:	:	\$ 1	7	Riboflavin (Ig. per^OO g.
;	:	:	:	:	:		:	:	:	:	:	:		:	:	N	:	8 :		:	:	:	;	:	10	r o°	Vitamin C mg. per 100 g
iş ÷	22.2	T	*) en	? to	1,7	7.0	(0 vi	1 ∼.8	22-5	20.5	20.0	29.5	21 • 0	22:4	22 .*	N co	8	• k	j i	22.	22. ro	1/20· e	, 8, 1	vi	21 ^	£	Moisture, g.
6	5.4	en M	en 10	4*			ui ro	ui en	3 6	7.2	e.	en »1	oa 6	w en	ui &	uj ca	ui S	qi q	ļi 1	>- À	م 4k	ba co	ba i	o Ui	en	8	Protein, g.
:	;	:	:	8.0		-	6.0	0.4	0.1	0.2	<u>-1</u>	T 4k	9 re	© •	©	•- to	ba GO	ro (© k	0.5		ba do	ba to	O ba	O vi	-	Fat (Ether extractives),
:	:	:	:	:		:	:	:	:	0.4	0.4	0.3	0.7	0	O 4^	Q ba	Q 4k		O 4k	9.0	Q ro			Ç œ	© W	<u>{2</u>	Mineral matter, g.
:	:	:	:	:		:	:	:	:	:	:	:	:	:	:	:	:	: :	:	;	:	:	:	;	;	23	Fibre, g.
:	:	:	:	:		:	:	:	:	:	:	:	3.5	<u>•</u>	:	:	:	0.4	:	:	:	:	0.2	ö	:	24	Carbohydrate, g.
23	Ui vi.	ba	ba	to		28	25	8	15	٧.	ω	-	250	370	25	æ	\$	w	N-	-*i	en	vi	8	8	G	25	Calcium (Ca), mg.
 100	SS		5 :	; 2	•	\$.	古	ro		S	s	SIf	£	g	iS	₩	;	=	120	*	g	S	S	¥	8	
O v1	O ba	:	:	O Ui		06	o en	o en	©		:	:	:	:	o ro	o vi	© vi	~ 00	o ro	o vi	O b»	о ф	o co	en 6	© ro	27	Iron (Fe), mg.
24	13	,	2 !	2 13	;	S 3	23	26	=	9	39	37	28	S	g	is	a	\$	26	28	26	\$	Ui_	<u>-</u>	92	23	Calorific value
; <u>-</u> -	:	:	:	: :	•	;	:	:	:	:	:	:	: _	:	Trace	Trace	9	6.333	ς	7		i	i	Trace	17	29	Vitamin A (International' Units)
:	:	;	 :	: :		:	:	:	:	:	:	:	:	:	- tace	* tace	*Trice	:		5 4		284	255	369	Trace	g	Carotene (International Vitamin A Units)
:	:		:	: :		:	:	:	:	:	:	:	:	:	126	ã	£	š		28		∀ ?	*	:	\$	£	Vitamin B, fig.
Q vi	v.)	o vl	o ;		:	:	:	:	;	:	:	:		1.4	ó Ó	- &	oi 6		÷ 0		<u> </u>	<u>\$</u>	6.0	÷	92	Nicotinic acid, mg.
· :	 5	15	:	: :		:	:	:	;	:	:	:	:	:	28	26	3	I		:		:	:	:	=	g	Riboflavin, [Ig.
:	:		:	: :		:	:	:		:	:	:	:	:	:	_	:	6		:		:	:	:	-	4	Vitamin C, mg.
ic				ro r	0	ro	» - 0	>•-« 00	17	ŏΤ	;	4	<u></u>	ANS	^	-	ω	ω	-4	٥	ui	•	(g	19	-	1 25	Serial number

. _	6	5	74	13	12	=	5	9	۰	7	.		•	4	• to	_		~	© t	0	œ	vi	en	en	•	.	• -	1	~ S	erial number
rangutari).	*Permodai" . **Pitis quad-	"Pappads" .	Malted palmyra	"Neera" .	"Makhana" .	Mahus flowers .	"Madapu ginja"	"Kalipakku" .	Jaggery · .	Halibut liver oil	Cod liver oil .	Coconut water	Coconul, tender	Betel leaves (Piper beth).	Arrowroot flour (West Indian) (Maresta aren- diesces).	Arecanut (Area	ouilad som).	"Kon" (I med	"Koa" (whole buffalo milk).	Cheese	Skimmed milk	Skimmed milk.	Butter-milk (Variety 3 des-	Curds	phaner	1	Milk. II. 5°		~]	Name of foodstuff
한 마	? rf»	8	Ť	:	12:8	Q VI	3 6	1 ₩	ş.9	:	:	95.5	3 co	8	16-5	91.3		&	3 a	S	* 	S					Q		»]	Moisture %
	- io	6 0	to	©	Q.7	4* ba	9		0:+	:	;	<u>•</u>	و و	<u>\$.</u>	0. 2.	÷		ĬO ba		»-*	% b	f	9	Λ o t	•	•	* « aoa		+	Protein %
5"	9 ba	_	9 ய		0:1	Ç ba	cp cb	CD 4^	. <u>.</u>	90	0.001	<u> </u>	<u>.</u>	œ	. 0.	<u>4</u> 4		•,- ot		- tc - ^ 1	9 >	9 1 ^ [;]		ro, - 9	w. o		ορ w n a		I w	Fat (Ether extractives)
India -	tO b	ίο	lO b	ç,	ç	iò	10 9)	Ņ- (D	9	:	:	ç ¥	o os	re w	2	ö		4* w	<u>.</u>	» M		J o C i	^	o aŧ	M	o cb	o o a Mi		I «	Mineral matter %
ਰ ~ ਵੰ _	ä	:	:	:	•	;	:	=	:	:	:	:	:	2:3	:	11.2		:	:	:	:	:_	:	<u>:</u>	:	:	: :		^ 1	Fibre %
	7.9	\$2. 4	90.2	9.0	<u>ئ</u>	S s	22:4	57-8	95-0	:	:	÷	6.3	<u>.</u>	\$	5		to Ui ^J	to 9? Ov		m """, ^3	** O)	O. Oi	O3	٧١ ^2	4k \ ^J	Ji 4*. «^ 00		-	Carbohydrate %
following product:	9 8	9 S	9 8	Trace	<u>\$</u>	ŝ	<u>•</u>	<u>و</u>	<u>§</u>	:		≎. 02	.0 .0	0.23	 6.	9.		9 to		9 . vi		9		9 9 •••	_	_	9 9 io M		٠	Calcium (Ca) %
	9	o. 96	o. 16	o. ‡	.	°÷	• ‡	÷°	\$:	:	<0.01	9	9 S	9· 0 2	0-13		9	9 /	9	T	9	b	9	9	9 to	9 9 ba to		5]	Phosphorus (P) %
	M •^	M to	to*	<u>ن</u>	N.	9 09	• Ui	Ť	1.4	:	•	o.5	o.9	Ųi ?	- 0	1.5		r o vi	u i CĎ	i t o	4*	o IŎ	٠,	O O	o o o a t	o w	0 0	,)	=	Iron (Fe) mg. %
_	97	288	346	\$	34	274	£	332	388	999.	900.0	17	å	±	5	5 <u>S</u>		NS OS	4^	₹	≥57	13	3	2	67	2	5 8		ι J 5 (Calorific value per 10
_	0	0	:	:	:	:	:	<u> </u>	С	2,00,00n 90,000,00	60,00°	:	:	•	•	•		;	:	J.	a ()		h		L	Ji	i	5	Vitamin A (Internat Units per 100 g.)
	:	Tage	:	:	Trace	25		:	280	•	•	:	:	9,600	:		įį	•								tti	tH	K	*	Carotene (Internationa Vitamin A Units.)
-	:		: :	910	:	:	:	:	8	:	:	:	:	6	:	_:		:	:	:	5	5:	:	:	:	:	S 2	Milk	5	Vitamin B, [I-,', per 1
	:	:	:	Trace	:	;	:	:	~	:	:	:	:	0.7	:	:		:	:	:	1:1	J:1	:	:	:	:	9 9		$ \mathbf{s} $	Nicotinic acid mg. per

FOOD VALUES—contd.

1 ===	1 16	 -					-		Valı	ies pe	r C	Ounce						
. per 100 g.	per 100			f	i i		•	ż), BÇ.			A (International	national Juiu)	14.	jë,		mg.	
Ze Riboflavin p.g.	Vitamin C mg.	Moisture, &	Protein, E.	ther extract	Mineral matter,	Fibre, g.	Carhohydrate,	Calcium (Ca),	Phorphorus (P),), mg.	Calorific value	Vitemb Units)	Carotene (International Vitamin A Units)	Vitamin B.	S Nicotiale acid,	Riboflavín, µg.	Vitamin C,	Serial number
	18	19	20.	21	22	23	24	25	26	27	28	29_	30	31	32	33	34	35
Mill	k P	rodu	cts			1					1	1			}	'		
200	2	24-8	0-9	10	0-2		1-4	34	25	01	18	51	Trace	i4	<0.1	57	1	1
]	>.	23.0	1-2	2-5	0-2		1-4	60	37	0-1	33	46	Trace	i	<0.1	••]	••	2
40		24-1	M	1-6	0-2	'''	1-4	48	34	01	24	52	Trace	••		11	••	3
30		24-9	0-3	1-1	<0.1	l	20	34	3	01	19	59	Trace	••		9	••	4
60		25-6 27-6	0-8	0-8	0-2		0-9	1	25	0-1	14	37	Tracel	**		17	••	5 6
"	"] 2/-0	0-2	0-3	1 -0>		01	8	8	0-2	4	Trace	0	••) ···	••		°
],	1	26-1	0-7	<0.1	02		1-3	34	25	0.1	8			••	<0.1		<1	7
		1-2	10-7	<0.1	1-9		14-4	39 0	280	0-4	101	0	0	16	0-3		••	8
1 '	t #	11-4	6-8	7 : 1	1-2	۱	1-8	220	150	0-6	99	77			İ			9
{	0	8-7	44	8-9	09	۱	5-8	180	120	1-6	120			.,			0	10
4							1	1000	190			 						11
	0	13.0	6-3	0-5	1-2	••	7-3	1280	180	0-8	59	4.	••	• • •)	••	0	11
Food	dstui			i	İ			f ,							•			
1	"	8-9	I 1-4	1-2	0-3	3-2	13-4	14	37	0-4	70	'	1	••	٠٠.	٠٠ ا	• •	1
]		4-7	0-6	0-3	<0.1	 	23-6	3	6	0-3	95	l			l	۱۱		2
1				}	Ì		}							i				
30	5	24-2	0-9	0-2	0-7	0-6	1-7	65	11	1*6	12		2,726	20	0-2	9	1	3
	2	25-7	0-3	0-4	0-2		1-8	3	8	0-3	11						Ţ	4
	2	27-1	<01	<0.1	04		1-1	6	<3	04	5			••			1	5
 ,	0	٠٠ ا		28-4	••	••	٠.,	••	••		256	17,040		••			••	6
1	0	·		28-4							256	to 56,800 , 107 ,				l	١	,
]	0	1-1	0•1	<0.1	0-2		27:0	29	11	3-2	109	600	** 79	6	0-3	. .		8
		3-9	1-8	2-4		3-4	L 6• 4	37	40	3-2	94				••			9
		10-2	5-7	5-3	0-7		6•4	60	120	1.3	97			••			• • •	10
		8-4	1-2	0-1	0-1		18•1	17	31	2-9	78	••	7					11
		3-6	2-8	<0.1	01		21 • 8	6	25	0-4	99		Trace]		12
Trace	13-3		0•1		0-1	,	3-1	Trac	e 40	<0.1	13			3 to 8	Trace	Trace	4	13
	•••	3-2	1-5	0-1	0-8		22 • 7	6	45	1-2	98				••			
	0	5-8	5-3	0.1	2-3	••	14-8	25	80	4-9	82		Trace					
]		24-8	0-3	0.1	0-6	0-5	2•1	180	14	0-6	11			••	••			
1	; 	-																ĺ

 $\textbf{TABLES} \cdot \textbf{OF}$

												1 3	3	. 45	٦
- Serial number	Name of foodstuff	2 Moisoure %	+ Protein %	Ge Pat (Ether extractives) %	9 Mineral matter %	2 Fibre &	co Carbohydrate %	to Calcium (Ca) %	% (h) shouthoung (h) %	liva (Fe) mg. %	7 Calorific value per 100 g.	Carotene (International Vitamia A Units per 100 g.)	7 Vitamin B ₁ µg, per 300 g,	5. Nicotinic acid mg. per 100g.	
												Misc	ellan	eous	•
17	Rajghiro (Amaranffius panicnlalus)	8-9	15*4	5-3	2-7	j 2-0	65.7	0-22	0-65		372		""	i	
18	Ri-d Palm nil (Elates quiter- sis).			1000							900	40,000 to 50,000			
19	Saqo (Meolr.yloti saqo).	12-2	0-2	0-2	0-3	Ì	87-1	j 001	001	1-3	351	0	10	0-2	ľ
20	''Sinjrhara'', drv (<i>Trappa bvp'm</i>	13-8	13-4	00	3-1		68-9	; 0-0 7	0-44	2-4	336	Trace		ļ	l
21	Sugar cane juice	90-2	01	0-2	0-4		9-1	0-01	0-01	1-1	39	10		••	Į
22	Sugar cane pre- serves.	81	0-6	01	1-8	110	78-4	002	006	14-3	317		,.	"	1
23	Sugar cane (same cane as for above preser- ves!.	75-8	0-1	01	0-5	3-0	20-5	<001	002	0-3	83		 		F
24	Toddy, sweet .	84-7	04	0-2	0-7		14-3	0-15	001	0-3	59	0	·		ĺ
25	Toddy sweet (coconut.).	96-2	01	<0-1	0-2		3-5	004	001	10	15	0	<u>ነ</u>	••	ļ
26	Toddy, ferment- ed (coconut).	983	0-2	0-2	0-1		1-3	0-1	001	1-3	7	0	}< ,,	••	ŀ
27	Toddy ferment- ed (obtained from a shop).	97-6	0-1	0-3	0-2		1-8	<001	001	1-1	10	0	J		ŀ
28	Yeast, dried (Brewer**).	13-6	39-5	0-6	7-0	0-2	39-1	0-44	1-49	43-7	320	110	6,000	400	ţ
29	Yeast, dried (food).	7-8	35-7	1-8	8-4		46-3	016	2.09	21-5	344	••	3,200	270	-

Honey contains about 80 per cent, of sugars, principally fructose and glucose. It may contain little vitamin C but no other Vitamins.

57

FOOD VALUES-concld.

t<							Va	lues j	per Our	nce		-		•			
8 i t que 1:2 1:2 1:6	Moisture, g.	Protein, G.	6 Fat (Ether extractives), f.	O Mineral matter, g.	Si Pipus 21	C Carbohyd 8.	Calcium (Ca), mg.	Phosphorus (P), mg.	52 Iron (Fe), mag-	56 Calorific value	Vitamin A (International Units)	S Carocene mational	55 Vitamin B1 12g.	e Nicotinic acid, mg.	12 Riboflavin, [Lg.	Niemin C.	& Berial number
Food	stu	ffsc	ontd.	,			}				r –	<u> </u>	 -		İ		
••	2-5	4•4	1.5	U-8	0-6	18-7	63	185		106							17
	} 		28-4			 				256		11,300 to 14,200			.,		ia
	3-5	0•1	0-1	0-1		24-7	6	3	0-4	100			3	<0.1			19>
•	3-9	3•8	0-2	0-9		19*5	20	120	0-7	95		Trace			ļ		20
40	25-6	<0•i	0-1	0-1		2-6	3	3	0-3	11		3			12		21
у	2-3	0•2	<0.1	0-5	 3-1 	22-2	6	17	4-1	90					 		22
	21-5	l·i>	1.0>	0-1	0-9	5-8	3	6	0-1	24					••		21
j	24-0	<0.i	0-1	0-2		41	43	9	0-1	17	 	ן וי ק					24-
	27-3	<0.i	<0.1	0-1		10	11	3	0-3	4					İ		2&
	27-9	0•i	<0.1	<: 0-1	 	0-4	8	3	0-4	2	••	}	<4		••		26
	27-7	<0·1	0-1	0-1		0-5	3	3	0-3	3	••	}					27 -
4.000	3-9	11•2	0-2	20	01	11-1	124	423	12-4	91	••	31	1,704	12-0	1,143	••	28
 "	2-2	10-1	0•5	2-4		13-1	45	594	6-1	98			909	7-7	·•		29

Honey contains about 80 per cent of sugars, principally fructose and glucose. It may contain a little vitamin C but no other vitamins.

APPENDIX I Biological Value of the protein in certain foodstuffs

Fo	odstuffs			•			•						Biologica Value
	Barley . •	•	•	•	•	•	•	•	•	•	•		` 71
	Gambu • •	•	•	*	•		•		•			•	83
	Gholam	•			•	•	•	•	•	••	•	•	83
	Italian millet .	•	•	•	•	•	•	•	•	•	•	•	77
**	Maize, tender	•			•	•	•	•	•	•		1.	60
	Maize, Yellow .	*	•	•	•	•	•		•		•	•	60
	Oatmeal	•	•	•	•	•	•				•		65
	Ragi		•	•	•	•		•	•	•	•		89
	Riqc, raw polished		•	•	•	•				•	•		86
	Wheat, whole				•	•	٠						67
	Bengal gram .		•	•		•			•	•			76
	Black gram.			•									64
	Cow pea.			•	•	•							61
	Field Beans . •	٠.	•	•								_	41
	Green gram. •	•	•	•						•			51
	Horse gram. •	•	•	•			·		-		·	•	59
	Lablab pea . •	•	•	•	•		•	•	•	•	•	•	65
	Lentil					_	·	•	-	-	•	•	58
	Red gram • •	•	•	•	•	•	÷	·	•	•	•	•	74
	Soya bean				•	•	•		•	•	•	•	54
	Amaranth leaves	•			•	•	•	• "	•	•	•,	•	72
	Gabbage leaves .	•	•	•	•	•	•		•	•	• '	•	76
	Drumstick leaves	•		•	•	•	•	•	•	•	•	•	41
	Ipomea leaves	•	• •	•	•	•	•	•	٠.	•	•	•	67
	Sesbania leaves •	•	•	•	•	•	•	•	•	•	•	•	64
		•	•	•	•	•	•	•	•	•	•	٠	67
	Potato	•	•	•	•	•	•	•	•	•	•	٠	72
	Sweet potato	•	•	•	•	•	•	•	•	•	•	•	.71
	Brinjal • •	•	•	•	•	•	•	•	•	•	•	•	.71 51
	Cluster beans •	•	•	•	•	•	•	•	•	•	•	•	82
	Ladies fingers .	«	•	•	•	•	•	•	•	•	•	•	58
	Almond . •	•	•	•	•	٠	•	•	•	•	•	•	72
	Cashewnut	•	•	•	•	•	•	•	•	•	•	•	58
	Coconut	•	•	•	•	•	•	•	•	1	•	•	50 67
	Gingelly seeds .	,	•	•	•	•	•	•	•	•	•	•	
	Linseed	•	•	•	•	•	•	•	•	•		•	78 57
	Ground-nut, raw .	•		•	•	•	•	•	•	•	•	٠.	57
	Ground-nut, roasted	•	•	•	•	•	•	•	•		**	•	56
	Buffalo meat •	•	•	•	•	•	•	•	-		٠,	•	60
	Cow muscle				•	•	•	•					69
	Goat meat				•	•	•	•	•				60
	Pork meat.				•	•	•	•	•				77
	Beef, liver	•			•	•	•		•	•			77 - 0
	Steam-dried rahee f	ish. (I	abso ro	hlti)		•							79
	Steam-dried hilsha (٠.					70
	Egg, whole	-	•	• •	•			•					94
								,					83
	3 5 111		•	•									85
	Milk, cow's Skimmed milk powde		•	*									C3
	VANADALIAN WALLER BUNG	~ .											

APPEN Equivalents in some

Name of foodstuff	Botanical name	Hindustani	Tamil	Tclugu
	•			Cere
Bajra or cambu	Pennisetum typhoides.	Bajra.	Cambu.	Gantclu. -A
Barley	 Hordeum vulgare .	Jau.	Barliarisi.	Barli Biyyam. j
Cholam	Sorghum vulgare .	Juar.	Cholam.	Jonnalu.
ltal≰ ^{fin} millet • •	Setaria Italica .	Kangni	Thenai.	Korralu.
	i _		ł	
*'Kootu'' or Buckwheat .	Fagopyrum escu- lentum.	••	••	1 "
Maize, tender.	Zea Mays	Makai, Makka.	Makkacholam.	Mokka Jonnalu.
Maize, dry	Do	••	Do.	Do.
Maize flour	Do	••	••	Mokka Jonna Pindi.
"Makhana" .		••		••
Oatmeal	Avena sterilis .	Jai.		• [
Pani varagu	Panicum miliaceum	China.	Pani varagu.	. .
Ragi	Eleusinc coracana .	Mandal, Okra.	Ragi.	Ragulu, Chollu.
Rice, raw, home-pounded	ار ا	Arwa Chawal.	Arisi, Kaikuthu, Pachai.	Dampudu, Biyyam Pachi.
Rice, parboiled, home- pounded.		Usna Chawal.	Arisi, Kaikuthu, Puzhungal.	Dampudu Biyyam Uppudu.
Rice, raw, milled . •		Arwa Chawal.	Arsi, Mill, Pachai.	Marabiyyam, Pachi
Rice, parboiled, milled .		Usua Chawal.	Arisi, Mill, Puzhungal.	Mara Uppudu Biy-)am.
Rice, white, puttu			Arisi, Vellai, Puttu.	Thella Biyyam.
Rice, black puttu . •	^Oryza sativa		Arisi, Karuppu, Put-	Nalla Biyyam.
Riceflakes	11. 1	Chowla.	Arisi, Aval.	Atukulu.
Rice, puffed		Murmura.	Arisi, Pori.	Pelalu.
Rice, raw, unmilled (pre- pared in wooden grin- der).	!		Arisi, Pachai, Mar <u>a</u> - yandiram.	Che Biyyam, Pachi.
Rice, raw, home-pounded			Arsi, Pachai, Kaiku- thu.	Dampudu Biyyam. Pachi.
Rice, raw, milled.	}		Arisi, Pachai, Mill.	Mara Biyyam, Pachi.
Sago · ·				
Samai	Panicum miliare •	Kutki, Sanwali.	Samai.	
Sanwa millet	Echinocbloa colona Link, varfrumaut-	Sawan.	••	Pedda Wundu.
"Singhara'fc dry	acca			•• i
Talipot flour .	Caryota urens.	••	Clnondananai. MiwuuajMiwii	Mhar Madi.
Vermicelli . '	••	Siwain.	Semiya.	Semiya.
Varagu or Kodu millet.	Paspalum scrobicula- tum.	Kodon, Kodra*	Varagu.	Variga. j

DIX n Important Indian Languages

	iulali Laligua	ges 			
Kanarese	Oriya	Marathi	Bengali	Gujarati	Malayalam '
als					
••	Bajra.	Bajri.	Bajra.	Bajri.	Kamboo.
.,	Jaba Dhana.	Juv.	Job.	Jau.	, Yavan.
jola.	Janha.	Jwari.	Jfuar.	Juar.	Cholam.
••	••	Rala.	Syamadhan, Kan- gni.	Ral Kang.	Thina.
'		Kutu.	••		Kootu.
Yele Musukinu Jolu.	Kancha Maka.	Muka.	Kacha Bhutta.	Makai.	Pathamulla (Ham) Cholam.
Vonugida Musu- kinu Jolu.	Sukhila Maka.	Muka.	Sukna Paka Bhutta.	Makai.	Unakku Cholam.
Joluda Hittu.	MakaMaida.	Muka Peeth.	Bhutta Churna.	A4*∖aino Loat.	••
	•			•• ·	Makhana.
			Jai.		Oat Mavu.
		Ghotisanja.	China.		Pani Varagu.
Raffi.	Mandia.	Nachni.		Ragi, Bhav.	Moothari.
Kotnuda Akki.	Dhinkikuta Arua Chaula.	Tandool.	AtapChowl(Dheki Chhata). ''»	Hatna Chhande- laChokah.	Pachhari (Vcetil Kuthiyathu).
Kotnuda KUMI balakki.	Dhinkikuta Usuna Chaula.	Tandool Ukda.	Siddha Chowl (Dheki Chhata).	UkadeUo Chokha	Ari Pathivevichua VeetU Kuthiyathu.
	Kalakuta Arua Chaula.	Tandool Sudlela.	Atap Chowl (Ko- lchhata).	Chokha.	Pachhari Milfil Kuthiyathu.
•	Kalakuta Usuna Chaula.	Tandool Ukda Sudlela.	Siddha Chowl (Kolchhata).		Ari. Pathi Vevi- chhu. MUIU Kuthiyathu.
	••	•			Velutha Puttari.
			••	•	Karutha Puttari.
Avalukki.	Chuda.	Pohc.	Chaler Khood.	Pohva.	AvU.
Puri.	Mudhi.	Murmure.	Muri.	Mumra.	Pori.
	Akhyata Chaula.	•	Atap Chowl (Dheki Chhata.)	••	
		TandooJ-Hat Sudicha.	Atap Chowl (Dheki Chhata.)		
		.	Atap Chowl (Kulchhata).	••	,
		Sabudana.		Sabudama.	Jauwari.
Semai.	Suan.	Sava.	Kangni.		Chama.
	Suan.	Shamula.	China.	Sawo.	Sanva thina.
					Unakkan Singhara
Į		Tad.			Kudannanna Nfavu
Shavigc.	Simai.	Shevaya.	Scwai.	•	Gottambunool Mavu (Semiya).
•		Harik.	Kodoadhan.		Varogu (Kodu. thiana).

Name of foodstuff	Botanical name	Hindustani	Tamil	Telugu
				Gei
Wheat, whole • •	Triticum aestivum .	Gehum.	Godumai.	Godhumalu.
Wheat flour, whole (atta)	Do.		Muzhua Godumai Ma.	Godhum Pindi.
Wheat flour, refined .	Do.	Maida.	Maida Mavu.	Maidha Pindi.
				Pu
Bengal (gram with outer husk).	Cicer arietinum .	Ghana.	Muzhu Kadalai.	Sanagalu.
Bengal gram, roasted (without outer husk).	Do.	Bhuna Ghana.	Kadalaiparuppu.	Sanaga Pappu, Ve- pudu.
'Bhetmas''	Glycine hispida .	Bhatwans.		
Black gram (without outer husk).	Phaseolous mungo	Urd.	Ulutham paruppu.	
Cow gram	Vigna catiang .	Lobia Bada.	Karamani.	Alachandalu.
Field bean, dry	Dolichos lablab	Val.	Mochai.	Adavichikkudu.
Green gram (with outer husk).	Phaseolus aureus Roxb.	Mung.	Pachaipayaru. '	Pesalu.
Iorse gram .	Dolichos bifloms .	Kulthi.	Kollu.	Ulavalu.
Khesari''	Lathyrus sativus .			Lamka.
entil (Masur dhal)	Lens culinaris Avfedic	Masur.	Misur Paruppu.	Misur Pappu.
eas, dried	Pisum sativum .	Bada Mattar.		Endu Pattani.
eas, roasted	Do	Bhuna Mattar.		Vepudu Pattani.
Rajmah''	**	Fransbean.	 	ļ
Rawan''	Vigna Simensis .	Lobhia.		
ed gram (Dhal arhar) (without outer husk).	Cajanus Cajan .	Arhar.	Tuvaram Paruppu.	Kandi Pappu.
oya bean 🕠 🕠	Glyine max. Merr.	Bhat.		
				,
·				Leaf
Agathi''	Sesbania grandiflora	Agasti or Jaint.	Agathi.	Avesi.
maranth, tender	Amaranthus tricolor	LalChoalai, Lai	Mulaikeerai.	Thota Koora.
maranth, spined . ,	Amaranthus spinosus	sag. Kantewali Choalai.		Mulla Thota Koora
amboo, tender shoots .	Bambusa bambos .	Bans.	 Moongil Kuruthu.'	Vaduru Chiguru.
Bathua'' leaves .	Chananadir 11	1		_
- 1	Chenopodium album Cicer arietinum	Sog Chana	Vadali Ilaigal	Sanaga Alm
• •	Brassica oleracea ge-	Sag Ghana.	Kadali Ilaigal.	Sanaga Aku.
1	mifera.	••		••
abbage	Brassica oleracea- capitata.	Band Gobhi.	Mutta Cose, Goskeer- ai.	Goskura.
	· F · · · · · · · · ·		i l	

Kanarese	Oriya	Marathi	Bengali	Gujarati	Malayalam
als—contd.					
Godhi.	Gahama.	Gahu.	Gom Asta.	Ghau.	Muzhu Gothambu.
Godhi Hittu	Atta.	Gahu Kuneek.	Atta (Jatabhanga).	Ato. "	••
Veida.	Maida.	Gahu Kuneek.	Maida.		Sudhicheytha Gc- thambu Mavu.
ses					
Kadale.	Buta.	Hurbura.	Chola (Gota).	Chana.	Kadala. *
Huri Kadale.	Bhaja Bura.	Futana.	Bhaja Boot (Ch- hatu).	Futana.	Varutha Kadala
		••			Bhetmas.
Bili Uddu.	Biri.	••	Mashkalai (Ch- hataj.	••	Uzhunnu.
Thadaguni.	Chani.	Kuleeth.	Barbati.		Mochhak Koltc.
Avarc.	Baragudi.	Walpapdi.	Sukna Sim.	Wai Papdi.	Val, UnangiyaiLu.
,	Muga.	Mug.	Mug.	Mag.	Cheru Payaru.
Huruli,	Kolatha.	Kulreth.	Kulihi Kalai.	Kuleeth.	Muthira.
	Khesari.	La£iDal.	Khesari.	Lakh.	Khesari.
Masur Belu.	Masura.	Masur.	Musuri.	Masur.	Masura Payaru.
Vona Bataai.	Matara.	Vatana.	Sukna Matar.	Vatana.	Pattani Payaru, Unangiyathu.
Hurida Batani.	Bhaja Matara.	••	Bhaja Matar.	Vatana.	Pattani Payaru, Varuthathu.
<u>.</u> . '	••		Barbati.		Rajmah.
	Suji.	Chawali.	Barbati Sim.	Chola.	Rawan.
Thugare Belt*.	Harada.	Toor.	Arhar Dal.	Tur.	Thuvara.
		Soya.	Gari Kalai.	Soya.	Soyabcen.
				ļ	
Ų .Vegetables	•	1]	
Agase.	Agasti Saga.	Agasti.	Baug Ful.	Agathio.	Agathi.
Yele Dantu.	Khada Saga.	Math.	Banopata Nate.	Tandaljo.	F.lam Cheru Cheeraj.
Mulla Dantu.	Kanta Neutia	Kate Math.	Kanta Nate.	Kantemedar*.	Mullan. Cheru Cheera.
••	Sara oag». Karadi, Baunsa Gaja.	Kalki Pan.	Bansh Ankur Bana	Vasasni Kupal.	Moongil elam Kombugal.
	Bathua Saga.	Chandan Bathua	Beto Sag.]	Bathua Elakal.
Kadale Soppu.	Chana Saga.	Hurbhura Pan.	Chola Sag.	Chanana pan.	Kadala Elakal.
Mara Kosu	Uhhota Dandlia Kobi.		Bilati Bamllia Kopc*.	.,	Bruuela Govei.
Matle Kosu.	Bandha Kobi.	tKobi.	Bhandha Kopec.	Kobi.	Muttagose. •
Gajari Soppu.	Gajara Patra.	Gajar Pan.	Gajar Sag. ,	Gajarna Pan.	Karat Elakal.

^{5—3} Health.

	<u> </u>		 	
Name of foodstuff	Botanical name	Hindustani	Tamil	Telugu
			<u> </u>	Leafy
Celery	Apium graveolens var. dulcr.	Ajwan Ka Patta.		••
Colombo keera		••]]	•
Coriander	Coriandrum sativum	Dhania.	Kothamalli.	Kottimiri.
Curry leaves	Murraya koenigii .	Gandhela.	Karuveppilai.	Karivepaku.
Drumstick •	Mtoringa oleifera .	Saijan.	Murungai.	Mulagakada.
Fenugreek	Trigonella foenum- graecum.	Methi.	Venthiam.	Mentulu.
Garden cress	Lepidium sativum .	Halim.	Alivirai.	Adityalu.
*'Gogu'' or Rctl sorrel	Hibiscus sabdarifla .	Patwa or Palsan.	!	Gogu.
Gram leaves	Cicer arietinum .	••	Kadalai Ilaigal.	Sanaga Aku.
Ipomoea	Ipomoea reptans .	••		••
Khesari leaves	Lathyrus sativum .	Khesari KaSa.		••
Lettuce	Lactuca sativa .	Salad.	••	••
Lettuce tree leaves, ten- der.	Pisonia alba.	а.		
Lettuce tree leaves, matur.	Do.		••	••
'Vfanatkalrkni''' x>anatnaKKaii	Sol&miiA iiii2runr§ %	Makoy.	^fanathakkali.	Kamanchichettu.
Mint	Mentha Spicata .	Paudina.	Pothina.	Pothina.
Neem, mature	Azadirachate indica	••	Veppa Ilai.	Vepa.
Neem, tender	Do.	• «•	Veppan Kolunthu.	Latha Vepa.
Parsley	Petroselinum crispum	••		••
"Ponnanganni"	Altemanthera amoraia	••	Ponnanganne.	* a '
Rape leaves	Brassica napus .	Sag Sarsoon.		••
SaffJower leaves	Carthamus tinctorius	••	Sendurkam.	Kusumbha.
Spinach • • •	Spinacia oleracca .	Palak.	Pasalai Kecrai.	Dumpabucchalc.
Soya leaves	Glycine max Merr .	Soya Sag.	••	••
Watercress	Nasturtium officinale	••	•	••
				Roots and
Beet root ,	Beta vulgaris	Chuquandar.		•
Carrot	Daucus carota .	Gajar.	Manjal Mullangi.	Pechcha Mullangi.
Golocasia	Colocasia esculenta	Arwi.	Seppan Khizhangu.	Chama Dumpa.
Onion, big	Allium cepa	••	Periya Vengayam.	Pedda Nirulli.
Onion, small	Do		Chinna Vengayam.	Chinna Nirulli.
"Onthalai gasu"	Dioscorea alata .			Gunapendalum.
Parsnip	Pastinaca sativa •			
Potato	Solanum tuberosum	Alu.	Urullai Kizhangu.	Urula Gaddah, Alu Gaddalu.
RaJish (pink)	Raphanus sativus •	Midi (Lai).	Sftrappu Mullangi.	Erra Mullangi.
Radish (white)	Do.	Muli.	Vellai Mullangi.	Thella Mullangi.
	i	I	1	1

H contu:				<u>. </u>	<u></u>
Kanarese	Oriya	Marathi	Bengali	Gujarati	Malaţalam
Vegetables—	contd.				
"	Juani Patra.		Randhuni Sag. Ghanu.	Ajmanrs Pan.	Sellary.
	Kanta Knsala.				••
Kothambari.	Dhania. ,	Kothimbir.	Dhanc Sag.	Kothmer.	Kothamalli.
Kari Bevu.	Bhrmunga Patra.	Kaḍḥi Limb.	Bununga.	Mitho-l.imbdo.	Karivepila.
Murige.	Sajana Saga.	Shevuga Pan.	Saijna Sag.	Saragwani Shenig	Muringa Kayo.
•1.	Methi Saga.	Mctlii.	Methi Sag.	Methi.	Uluva.
	••	Ahaliv.	Halim (Chanel-rasura).	Asalio.	Thotta Kaykar kal.
	Nalite Saga.	Ambadi.	Mesta (Patwa).		Gogu.
Kadale Soppu.	Anabana Saga.]	Chola Sag.	Ghanana Pan.	Payarilakal.
·	Kandamula Saga.	Nalichi Bhaji.	Kalmi Sag.		Ippomia.
••	Khesari Saga.	.	Khesari Sag.		Kesari Elakal.
	Leteus Saga.		Salad.	Salat.	Uvarchrcra.
'			Kachi Salad Pata.		
			Paka Salad Pata.		••
.Ganika.	**		Kakamachi, Mako.		ManaUiakkali.
	m t	·	••)	•]	Thulasi Chedi.
Pudina.	Podana Patra.	Pudeena.	Pudina Sag.	Fudino.	Mootha Veppil
fialita Bevu.	Nima Patra.	Kodu Limb.	Paka Xeem Pata.>		Elam Veppila.
Vele Bevu.	Nima Kadha.		Kachi Neem Pata.	••	Kothambelari:
				••	Cheem (Putheena
	Madarang.		Khanchari.	••	Ponnanganni. ,
	Shorisa Saga.		Sarisa Sag.		Mundiri Elakal.
••	••	Kusumba.	Kusumphal, Kajireh.	••	Kusumbha Poori kal.
	Palanga Saga.	Palak.	Palang Sag.	Palak.	Vasalacheera.
	Söya Patra.		Gouri Kalai Sat.		Soya Elakal.
	Brahmi Sag. •	••	Halim.		••
Tubers					
	Bita.	Beet.	Beet.	Beet.	Beet Root.
. [Gajara.	Gajar.	Gajar.	Gajar.	Karat.
Keshave.	Saru.	Alu Kanda.	Kachu (Kalo Kachu,Mankachu)	Alvi. #	Chembu.
Dodda Erulli.	Uli Piaja.	Kanda.	Bara Pyaj.	Dunpli.	L'lli (Valuthu).
Chikka Erulli.	Piaja.		Chota Pyaj.		Ulli (Cheruthu).
	••	'			Onthalaigasu.
·· .				[Parspin Kizang
Urula Gadda	Alu.	Batata.	Gol Alu.	Batata.	Urula Kizangu
		1		,	
Kcmpu Mullangi.	Nali Mula.	Mula.	Mula (Lai).	Mogari.	Mullan _K i (Ch vanna Tharam

Name of foodstuff	Botanical name	Hindustani	Tamil	Telugu
Sweet potato	• Ipomcoa batatas	Shakarquand.	Sarkarai Valli Kiz- hangu.	Roots and Dumpalu, Chelagada Dumpalua
Tapioca • • •	• Nfanihot esculenta •	Maravali, Simla Alu.	Maravalli Kizhangu,	Karrapendalam.
Yam (elephant) •	Amorphophallus campanulatus.	Zamin Kand.	Senai Kizhangu.	Surei Kanda.
Yam (ordinary) •	Typhonium trilobatum.	Ratalu.	Karunai Kizhangu.	Kanda.
				Other
Amaranth, stem •	geticus.	Gholai ki Dandi.	Keerai Thandu.	Thota Koora kada.
Artichoke • • •	Cynara scolymus .	Hattichak.	••	
Ash gourd • • •	Benincasa hispida .	Prtha.	Kalyana Pushinikai.	Budedagummidi.
Bitter gourd	NComordica charantia	Karela.	Pavakkai.	Kakara.
Bitter gourd (small va-	Do.		·	Agakara.
Brinjal	Solanum melongena.	Baingan.	Kathirikai.	Vankayi.
Broad beans	Vicia faba.	Scm.	Avaraikkai.	Pedda Chikkudu.
Calabash cucumber	Lagcnaria siceraila .	Lowki, Ghia Kadu.	Soraikki.	Sorakaya.
Cauliflower	Brassica olercea	Gobhi.	Kovippu.	Kosugadda.
"Cho-cho" marrow	Sechium edule •			
Celery stalks . • •	Apium graveolens var. dulce.	Ajwan ki Dandi.		
Cluster beans	Cyamopsis tetragonoloba.	Guar ki Phalli.	Kothavarangai.	Goruchekkudu Kaya- lu.
Colocasia stems • •	Colocasia esculenta .	Banda, Arwi Ki. Dandi.	••	
Cucumber	Cucumis sativus .	Kakari.	Kakkirikkai.	Dosakaya.
Double beans • •	Faba vulgaris .	Chastang.		•••
Drumstick • • •	Moringa oleifera	Saijan.	Murungaikai.	Mulagakada.
French beans	Phaseolus vulgaris .	Bakla.		
Ipomoca stems	Ipomoca reptans .			[
Jack tender . • •	Artocarpus heterO'' phyllus.	Kathal.	Pila (Pinchtf.	Letha, Panasa.
Jack fruit seeds	Do.	Kathal Bichi.	Pilakkotlai.	Panasa Ginjalu.
"Kandan Kathiri" . •	Solanum xantho- carpum.	Kateli.	Kandan Kathiri.	Vamkuda.
"Kovai" fruit, tender	Coccinia cordifolia .	Kundree.	Kovaikaf.	Donda Kayi.
Knol-khol m •	Brassica caulorapa .	Kohl Rabi.	••	••
Ladies fingers	Abelmoschus cscu- lentus.	Bhindi	Vendaikai.	 Bendakayi.
Leeks . • • ·	Allium porrum •	Vilayaiti La won,		••
Mango, green	Mangifera indica •	Am (keri).	Mangai.	Mamidikfiyi.
"Nellikai" (amla) .	Phyllanthus emblica	Amla.	Nellikai.	Usirikayi.

				<u> </u>	,
Kanarese	Oriya	Mar»,thi	Bengali	Gujarati	' Malayalam
Tubers—cont	d.				
Genasu.	Kanda Mula.	Ratale.	Ranga Alu.	Sakkaria.	Ghakkará Kisan- gu.
Mara Genasu.	Katha Kanda.			••	Marakizangu
Dodda Suvarna Gedda	Hatikhojia Alu.	Suran.	Ol.	Suran.	Chena (Valuthu).
Ghikka Suvarna Gedda.	Khamba Alu.	Goradu.	Ghet Kachu, Ratalu.	Ratalu.	- Chena (Sadhara- na).
 Vegetables				İ] [
Dantu.	Khada.	Rajgira	Nate Danta.	Rajgiro.	Gheru Ghcera- thandu.
			Hatichoke.		Artichoke.
	Pani Kakharu.	Kohala.	Ghal Kumra.		Elavan (Kumbe langa).
Haaala.	Bada Kalara.	Karle.	Karala.	Karela.	Kayppakka.
	Thusi Kalara.		Uchchhr.		Kayppakka Cherutharam.
Bjdane.	Baigana.	Vange.	 Begun.	Ringna.	Vazuthininga.
Chappara Da ere	Simba.	w.	Makhan Sim.	Fafda Papdi.	Av-rakka.
Sorekai.	Lau.	Pandhara, Bho- pala.	Lau.	Dudhi.	Churakkai.
Hukosu.	Phul Kobi.	Phool Kobi.	Phul Kopec J	Phul Kobi. •	Kaliflowrr.
Seemai Badane.	Phuti Kakudi.		• i		Cho Gho (Kam bu).
	Juani Nada.		Randhunidanta.		Selary Thandu.
Gori Kayi.	Guanra Chhuin.	Govari.	Jhar Sim.	Govar.	Kothavara.
Keshave Dantu.	Saru Nada.	••	Kachu Danta.		Chembin Thandu
Southai Kayi.	Kakudi.	Kakari (Khire)	Sasha.	Kakdi.	Vellari.
••	Bean.			Papdi.	Avara.
Muriffiii Kavi	Sajana Ghhuin.	Sheruga Sheng.	Saijna Danta.		Muringakkai.
Huruli Kayi.	Bean.	Pharashee.		Fansi.	Frenchavata (Seema Avare).
·	Kandamila Danka.	Nalichi Bhaji.	Kalmi Danta.		Ipomiya Thandu.
Yele Hal&su.	Panasa Katha.	Phunas.	Echore.	Kawla Phanas.	Idichakka.
Halasina Beeja.	Panasa Manji.	Athali.	Kathal Bichi.	Phanas Na Bi.	Ghakkakku ru.
	Bheji Baigana.	••		*	Kandan Kathiri.
	Kunduru.	Tondale.	Telakucha.		Elam Kovakka.
	Ulkobi.	Knol-Khol (Nol-	Ole Kapi.	Nolkol.	Nool-kol.
Bende.	Bhendi.	Kol). I Bhendi.	Dherash.	Bhinda.	Vendakka.
	Bilati Rasuna.	Khorat.	BUati Payaj.		VeUulli.
Mavina Kayi.	Kancha Ambu.	Amba.	Kachuhcha Am.	Keri. ,	Manga (Pacho).
Nelli Kayi.	Anla.	Anvla.	Amlaki.	Amla.	Indian Nellikke.
Tacini Kayı.	l	l	2	<u>!</u>	1 .

Nut of Avocado pear Persea drymifblia Onion stalks Allium cepa Pyaz. Ulli Kadalu. "Parwar" Phascolus vulgaris Phascolus vulgaris Phascolus vulgaris Phantain flower Phantain stem Do. Kele ka Phul. Vazhaifkai. Arati Puwu. Arati Puwu. Arati Puwu. Arati Dawa. Gummadi Kayi. Rape plant stem Brassica napus Rhubarb stalks Rheum Rhaponticum Ridge gourd Luffa acutangula Torai. Singhara" or water chest- nut. Sanac-gourd Trichosanthes anguina Spinacia oleracea Palak ki Dandi Sword beans Canavalia gla'Jiata Tomato, green Lycoperiscon esculentum. Turnip Brassica rapa Shalgham. Stafedh Kaddu. Almond Primus amygdalus Anacardium occidentale. Coconut Cocos nucifera Nariyal. Till. Sundakadalai. Veru Sanaga Kayi.		<u>. </u>	<u> </u>	<u></u>	
Nut of Avocado pear Onion stalks Allium cepa Pyaz. Battani, Pachi. Parwar'' Peas, English Pisum sativum Phascolus vulgaris Phantain flower Plantain green Do. Cucurbita maxima Rape plant stem Brassica napus Rape plant stem Brassica napus Rape plant stem Brassica napus Rape plant stem Brassica napus Rape plant stem Ridge gourd Lafla acutangula Torai. Singhara' Trichosanthes anguina Spinach, stalks Spinacia oleracea Palak ki Dandi Sundakkai' drv Tomato, green Locurbita pepo Cucurbita pepo Rafedh Kaddu. Primus amygdalus Cucurbita pepo Rafedh Kaddu. Primus amygdalus Canewalin gla'liata Cucurbita pepo Cucurbita pepo Rafedh Kaddu. Primus amygdalus Canewalin pepo Rafedh Kaddu. Radam, Vadamkotai Ratur Thambartann. Canewalin pepo Rafedh Kaddu. Radam, Vadamkotai Ratur Thambartann. Ratur Thakkalikai. Cheema Vankayi. Cheema	Name of foodstuff	Botanical name	Hindustani	Tamil	Telugu
Onion stalks					Other
"Parwar" Trichosanthes dioica Pisum sativum Patrani, Pa, "ba." Pattani, Pa, "ba." Battani, Pachi. Pisus sativum	Nut of Avocado pear .	Persea drymifblia .	••	••	••
Peise, English	Onion stalks .	/.Ilium cepa .	Pyaz.	••	Ulli Kadalu.
Peas, English . Plants and the principle of the properties of the principle of the principl	"Parwar"	Trichosanthes dioica	••		••
Plantain flower Musa sapientum Kele ka Phul. Vazhaippu. Arati Puwu. Arati Puwu. Arati Puwu. Arati Puwu. Arati Puwu. Arati Puwu. Arati Kayi. Arati Puwu. Arati Kayi. Arati Ma	Peas, English	Pisum sativuxn .	Matar	Pattani, Pa,''hai.	Battani, Pachi.
Plantain green	Pink beans	Phascolus vulgaris .	Babril	••	••
Plantain stem	Plantain flower	Musa sapientum ,	Kele ka Phul.	Vazhaippu.	Arati Puwu.
Pumpkin	Plantain, green	Do.	Kele ka Phate.	Vazhaikkai.	Arati Kayi.
Rape plant stem . Brassica napus . Sarson ki Dandi. Rhubarb stalks . Rheum Rhaponticum Ridge gourd . Luffia acutangula . Torai. "Singhara" or water chestnut. Trapa bispinosa . Singhara. Trichosanthes anguina . Spinacla oleracea . Spinacla oleracea . Solanum torvum . Sundakkai' drv . I . Solanum torvum . Sword beans . Canavalia gla'liata . Citrullus vulgaris . Lycoperiscon esculentum. Turnip . Brassica rapa . Shalgham. Turnip . Brass	Plantain stem	Do.	Kele ka Tana.	Vanhaithandu.	Arati Dawa.
Rhubarb stalks . Rheum Rhaponticum	Pumpkin	Cucurbita maxima .	Kaddu.	Parangikkai.	Gummadi Kayi.
Ridge gourd . Luffia acutangula . Torai. Firkkankai. Beerakai. Kubayakam. Trapa bispinosa . Singhara. Pauri Mattaisel. Kubayakam. Podalangai. Potlakayi. Bachala Kada. "Sumlakai" drv I Solanum torvum . Sundakkai Vethal. Usthikaya. "Sword beans . Canavalia gla'Jiata . Citrullus vulgaris . Lycoperiscon esculent urn. Tomato, green . Lycoperiscon esculent urn. Turnip . Brassica rapa . Shalgham. Safedh Kaddu. Wegetable marrow . Cucurbita pepo . Safedh Kaddu. Almond . Primus amygdalus . Badham. Badam, Vadamkotlai . Buddadi Gummadi. Nuts and . Anacardium occidentale. Coconu . Cocos nucifera . Nariyal. Thengai. Gobbari Kayi. Ground-nut . Arachis hypogea . Moongphali. Brassica campestris . Brassica campestris . Do. Linseed seeds . Linum usitatissixnum . Mustard seeds . Brassica campestris . Pistaria uera . Pistaria uera . Pistaria uera . Pistaria uera . Pistaria uera . Piere clusii . Wartstihippali. Palak ki Dandi . Pauri Mattaisel. Kubayakam. Podalangai. Potlakayi. Beachala Kada. Lufhikaya. Kattu Thambartam. Adavithamaa. Cuthikaya. Cheema Vankayi. Usthikaya. Valavithamaa. Cheema Vankayi. Cheema Vankayi. Badam, Vadamkotlai . Nuts and Badam Kayi. Mundiripparuppu. Jeedi Pekka. Gobbari Kayi. Varutha Nilakkadalai. Veru Sanaga Kayi. Varutha Nilakkadalai. Vachina Veru Sanaga Kayi. Varutha Nilakkada- lai. Varutha Nilakkada- lai. Varutha Nilakkada- lai. Pistario nut Pistari uera . Pistar. Akhrot. Nattu Akroti Vittu. Arisithippali Arasithippali.	Rape plant stem	Brassica napus .	Sarson ki Dandi.	••	••
Trapa bispinosa Singhara. Pauri Mattaisel. Kubayakam. Potlakayi. Singhara'' or water chest-nut. Trichosanthes anguina Spinach, stalks Spinacia oleracea Palak ki Dandi Potlakayi. Bachala Kada. Usthikaya. Sword beans Canavalia gla'Jiata Citrullus vulgaris Citrullus vulgaris Utayli Baingan Thakkalikai. Cheema Vankayi. Turnip Brassica rapa Shalgham. Safedh Kaddu. Safedh Kaddu. Sundakkai Vethal. Cheema Vankayi. Cheema Vankayi. Cheema Vankayi. Cheema Vankayi. Cheema Vankayi. Safedh Kaddu. Safedh Kaddu. Safedh Kaddu. Sundakkai Vethal. Sundakkai Vethal. Cheema Vankayi. Cheema Vankayi. Cheema Vankayi. Cheema Vankayi. Safedh Kaddu. Safe	Rhubarb stalks	Rheum Rhaponticum	Revand-chini.	Nattu ireval-Chinni.	Nattu Pasapu Chinna Gadda.
Singaria of water chestinut. Snake-gourd Trichosanthes anguina Spinach, stalks Spinacia oleracea	Ridge gourd	Lufla acutangula .	Torai.	Pirkkankai.	Beerakai.
Spinach, stalks Spinacia oleracea	"Singhara" or water chest-	Trapa bispinosa .	Singhara.	Pauri Mattaisel.	Kubayakam.
Spinach, stalks Spinacia oleracea	Snake-gourd	Trichosanthes anguina		Podalangai.	Potlakayi.
Sword beans Canavalia gla'Jiata	g . , , , ,				Bachala Kada.
"Tinda" tender	''Sumlakai'' drv . I	Solanum torvum	••	Sundakkai Vethal.	Usthikaya.
Tomato, green Lycoperiscon esculent urn. Turnip	Sword beans	Canavalia gla'Jiata .	••	Kattu Thambartam.	Adavithamaa.
Turnip Brassica rapa	"Tinda" tender	Citrullus vulgaris .		••	••
Vegetable marrow Cucurbita pepo Safedh Kaddu. Buddadi Gummadi. Nuts and Nuts and Badam, Vadamkotlai Mundiripparuppu. Goconut Cocos nucifera Scsamum indicum Ground-nut Ground-nut, roasted Linum usitatissixnum Mustard seeds Buddadi Gummadi. Nuts and Badam, Vadamkotlai Mundiripparuppu. Thengai. Ellu. Nilakkadalai. Veru Sanaga Kayi. Varutha Nilakkada- lai. Varutha Nilakkada- lai. Vachina Veru Sanaga Kayi. Vachina Veru Sanaga Kayi. Vachina Veru Sanaga Kayi. Vachina Veru Sanaga Kayi. Pistaria uera. Pista. Avalu. Pista. Avalu. Nattu Akrotu Kottai. Nattu Akroti Vittu. "ArisithippilU? Piper clusii Piper clusii Piper clusii Piper clusii Pagungayam Pa	Tomato, green	Lycoperiscon escu- lent urn.	Vilayli Baingan	Thakkalikai.	Cheema Vankayi.
Almond Primus amygdalus . Badham. Badam, Vadamkotlai Badam Kayi. Jeedi Pekka. Cashew nut	Turnip	Brassica rapa	Shalgham.	••	••
Almond Primus amygdalus . Anacardium occidentale. Kaju. Kaju. Mundiripparuppu. Jeedi Pekka. Coconut Cocos nucifera . Nariyal. Thengai. Gobbari Kayi. Gingelly seeds Scsamum indicum . Til. Ellu. Nuwulu. Ground-nut Arachis hypogea . Moongphali. Bhuni Mongphali. Veru Sanaga Kayi. Ground-nut, roasted . Do. Bhuni Mongphali. Varutha Nilakkadalai. Vachina Veru Sanaga Kayi. Linseed seeds Linum usitatissixnum Alsi. Rai. Kadugu. Avalu. Oyster nut Telfairea pedata . Pistaria uera Pista. Walnut Juglans regia . Akhrot. Nattu Akrotu Kottai. Nattu Akroti Vittu. "ArisithippilU? . Piper clusii	Vegetable marrow .	Cucurbita pepo .	Safedh Kaddu.		Buddadi Gummadi.
Cashew nut			•		Nuts and
Cashew nut	Almond	Primus amvgdalus .	Badham.	Badam, Vadamkotlai	Badam Kayi.
Coconut Cocos nucifera . Nariyal. Thengai. Gobbari Kayi. Gingelly seeds Scsamum indicum . Til. Honogai. Ellu. Nuwulu. Ground-nut Arachis hypogea . Moongphali. Bhuni Mongphali. Varutha Nilakkadalai. Vachina Veru Sanaga Kayi. Linseed seeds Linum usitatissixnum Alsi. Alsi. Kadugu. Avalu. Oyster nut Pistaria uera Pista. Walnut Juglans regia Akhrot. Nattu Akrotu Kottai. "ArisithippilU? . Piper clusii		Anacardium occiden-	Kaju.	Mundiripparuppu.	Jeedi Pekka.
Gingelly seeds Scsamum indicum . Til.	Coconut		Nariyal.	Thengai.	Gobbari Kayi.
Ground-nut	•	Scsamum indicum .	Til.	Ellu.	Nuwulu.
Ground-nut, roasted . Do. Bhuni Mongphali. Varutha Nilakkada- lai. Vachina Veru Sanaga Kayi. Linseed seeds . Linum usitatissixnum Alsi	G 1 4		Moongphali.	Nilakkadalai.	Veru Sanaga Kayi.
Mustard seeds Oyster nut Pistachio nu£ Juglans regia Akhrot. Kadugu. Kadugu. Avalu. Avalu. Avalu. Nattu Akrotu Kottai. Nattu Akroti Vittu. Piper clusii	· · · · · · · · · · · · · · · · · · ·				Vachina Veru Sanaga Kayi.
Oyster nut Pistaria uera Pista	Linseed seeds	Linum usitatissixnum	Alsi.		·
Pistachio nu£ Pistaria uera Pista	Mustard seeds	Brassica campestris .	Rai.	Kadugu.	Avalu.
Pistachio nu£ Pistaria uera Pista	Oyster nut	Telfairea pedata .			
Walnut Juglans regia Akhrot. Nattu Akrotu Kottai. Nattu Akroti Vittu. "ArisithippilU? Piper clusii	•	Pistaria uera	Pista.	} *	
Arisimppho.		Juglans regia . •	Akhrot.	Nattu Akrotu Kottai.	Nattu Akroti Vittu.
Asafoetida • • • Ferula foelida • Hing. Perungayam. Inguva.	''ArisithippilU?	Piper clusii		Arisithippali.	
	Asafoetida • • •	Ferula foelida 🔒	Hing.	Perungayam.	Inguva.

	t		·	· · · · · · · · · · · · · · · · · · ·	*
Kanarese	Oriya	Maraihi	Bengali	Gujarati	` Malayalam
Vegetables—	contd				
v egetables—	contu.			1	و .
•	 		••	•	Avacado pcrakka kmu.
Erulli Soppu.	Piaja Sandha.	Pati.	Payaj Kauli.	Dunglbia Da- khadi.	Ullierathandu.
«i ··	Potala.	Parwar.	Patol.	Padwal.	Parwar.
Seemai Batani.	Matara. #	Vatana.	Bilati Motor.	Watana.	English payaru.
Kempu Huruli.	Nali Simba		Lai Sim.	Valore.	Chuvanna Avara.
Balo Motho.	Kadali Bhanda.	Kel Phool.	Mocha.	Kelphool.	Vazha Koombu.
Bale Kayi.	Bantala Kadali.	Kele.	Kanch Kola.	Kela.	Vazhakka. *
Dindu.	Kadali Manja.	Kelicha Khunt.	Thor.	Kelanu Thed.	Vczha thandu.
Kumbala.	Kakharu.	LalBhopla	Kumra.	Kohlu.	Kumbalanga (Ma* than).
!	Sorisa Nada.	••	Saiisa Danta.	Rainu Zad.	Mundhimga Chetli Thandu.
j ,	••	- 	keuchini Danta.		Variyath Thandu.
Hecraikai.	Jauhi.	Dodka.	Jhinga.	Turia.	Pecchinga.
* ••	Pani Singhra.	Shinghara.	Paniphal.	Shingoda.	Singhara (Jala Sasyam).
Padavala.	Chachindra.	Pudwal.	Chichinga.	Pandula.	Padavalanga.
••	Palanga Nada.	••	Palong Sag Danta.	••	Vasalicheera thandu.
Sondckai.	••	••	Titbaigum.	••	Sundakka (Un- angiathu).
	Maharda. *	Abaichi Sheng.	Kathsim. •	Abbayni Shing.	Valavara.
				Giloda.	(Elam) Thinda.
Aasvru dapparu Ghapparu Bandane	Kancha Bilati Baigana.	Tomato.	Kancha Bilati Begum.	Tamatu.	Pachhat thakkali.
	Salagama.	Vilayati gajar.	Shalgom.	Shalgam.	Tharkkari Kizangu.
DilPasand.	Golu Phuti Kakuri.	Pandhara-Bhopla Kashi Bhopla.	Dhundul.	••	Bilathi Churrakka.
Oil-seeds					1
Badami.	Badama.	Budam.	Badam.	Badam.	Badam.
Geru Pappu.	Lanka Ambu Man- ji.	Kaju.	Hijli Badam.	Kaju.	Parangiyandi.
Thengu.	Nadia.	Naral.	Narikal.	Nariel.	Thenga.
Acchellu.	Rasi.	Til	Til	Tal.	Ellu.
Kadale Kayi.	China Badazn,	Bhui Moog.	China Badam	Bhoitfinflfa	NilakVadfila.
Hurida Kadale Kayi.	Bhaja China Badama.	(Bhui Moo?) Bhajalelisheng.	China Badam.	Shekeli-shing.	Nilakkadala Vaiuthathu.
	Pesi.	Juwas.	Tishi.	Alsi.	Cheruchana Vithu.
Sasave.	Sorisa.	Mohori.	Sarisha.	Rai.	Kaduku.
		\			
Pisthaw.	Pista.	Pista.	Pesta.	Pista.	Pistasi Andi.
•	Akhrot.	Akrod.	Akhrot.	Akrot.	Akrotandi (Aksho dakhai).
••	Sarupipali.		Pipul.		Arisithippali.
Hingu.	Hiogoo.	Hing.	Hing.	Hing.	Perungayam.

				1 .
Name of foodstuff	Botanical name	Hindustani	Tamil	Telugu
				Condiments,
Caidamom	Elettaria cardama- mum.	Elyachi.	Elakkai.	Elakkayi.
Chillies, green		Mirch, Hari.	Pachai Milagai.	Pachi Mirapakayi.
Chillies, dry .	Do.	Mirch, Lai.	Milagai Vethal.	Endu Mirapakayi.
Cloves, dry	Syzygium aromati- cum.	Laung.	Kirambu.	Endu Lavangalu.
Cloves, green	ъ	••	Pachai Kirambu.	Pachi Lavangalu.
Coriander	Coriandrum sativum	Dhania.	Kothamalli Virai.	Dhaniyalu.
Cumin	Cumin um cyminum.	Zira.	Jeeragam.	Jeelakara.
Fenugreek seeds	TrigonelJa focnum-	Methi.	Venthiyam.	\fcnthulu.
-	graecum.]		1,,,,,,,,
Garlic	1	Lehsan.	Ullipundu.	Vellulli.
Ginger	1	Adrak.	Inji.	AUam.
"Kandaimhippili" .	Piper roxburghii .	Nacional de la charitte d	Kandanthippili. Elumccham-thol.	Nimma Thoku.
Lime peel	Citrus medica var. acida.	Neelre ka chpilkai.	Elumcenam-mor.	Nimma Tnoku.
Mace	Myristica fragrans .	Javitri.	Jathi Pathiri.	Japathri.
Mustard	Brassica juncea	Rai.	Kadugu.	Avalu.
Nutmeg	Myristica Fragrans .	Jaiphal.	Jathikai.	. Jajikai.
Nutmeg, rind	Do.		Jathikai-thol.	. а
Omum	Trachyspermum	Ajwan.	Omum. a	Vamu.
I^PPer green		••	Pachai Milagu.	Pachi Miriyalu.
Pepper, dry	Do.	Kali Mircha.	Milagu.	Endu Miriyalu.
Tam&rincl nuln	Tamarindus indica •	Im <u>li.</u>	Puli.	Chinthanandu.
Turmeric	Curcuma domestica	Haldi.	Manjal.	Pasupu.
•				. [
		1		Fru
Apple	Malus sylvestris •	Seb.	.,	
Banana	Musa paradisiaca .	Kela.	Nendaram, Valai.	Aratipandu.
Bilimbi	Averrhoa bilimbi .	Kamrack.	Bilimbi.	Bili, bili, Kayalu.
Bread fruit	Artocarpus altilis .			
Bullock's heart .	Anona reticulata .		Ramsita Pazham.	Rama Phala.
Cape goosc-berry	Physalis peruviana.	Rashbhari.		
Cashew fruit	Anacardium occi-	Kajuka Phal.	Mundiri Pazham.	Jcedi Pandu.
Dates (Persian)	dentals. Phoenix dactylifera .	Khajur.	Peiichampazham.	Khar Jooram.
•	Devision of the			.
Durain, ripe . • •	Durizibethinus •	 Aminom	A Albi or a lb	
Figs	1 !	Anjeer.	Athi pazham.	Athipallu.
Grapes (Blue variety)	Vitislabruscana vinifera.	Angur.	Nila Drakshai.	Nalla Draksha.

H—contd.

•	Kanarese	Oriya	Maratḥi	Bengali	Gujarati	
	Spices, etc.					
	Yelakki.	Alaichi.	Velchi.	Elachi.	Elaychi.	Elathari.
	Hasi Menasina- kayi.	Kflnrhfl f_j&nkfl.	Mirchi Hirvi.	Kancha L^anka.	Lila Marcha.	Pachha Mulaku.
	Vf oa Menasina- kayi.	Sukhila Lanka.	Mirchi Lai.	Sukna Lanka.	Sukvela Marcha.	Kappal Mulaku.
	Lavanga.	Sukhila Labang.	Luvang.	Sukna Labanga.	Lavang.	Karambu.
	Hasi Lavanga*	Kanrha I^hanv.	Do.	Kancha Lab ^{nn<ni< sup=""></ni<>}	l	••
	ICothauriiKsa.	Ilnania.	Dhane.	Dhania.	x̃^otliffiir, Lib_ dhana.	Kothambalari.
		Jira.	Jire.	Zira.	Jiru.	Jeerakam.
		Methi.	Methi.	Methi.	Methi.	Uluva.
	Bellulli.	Rasuna.	Lusoon.	Rashun.	Lasan.	VeUulli.
	Shuņti.	Ada.	Ale.	Ada.	Adu.	Inji.
		Pipali.	Mire.	Pipul.		Kandanthippal '•
	Nimbe Sippai.	Lembri chopa.	Limb Sal.	Lelrerkhoshu.	Limbuni chhal.	Gherunaranga tholi.
	ļ ,,	Jaitri.	Jaypatri.	Jayitri.		Jathipathri.
	Sasave.	Sorisa.	Mohori.	Sarisa.	Rai.	Kaduku.
	Jayikai. '	Jaiphala.	Jai phal.	Jaiphal.	Jayphal.	Jathikka. 🕶
	Jaikai Thogate.	Jaiphal-Chopa.		Jaiphal Bakal.		
	Oma.	Juani.	Onva.	Joan.		Omam (Ayamo- dakam).
	Hasi Menasu.	Kancha Golmari- cha.	Mire.	Kancha Gohna- rich.	i '	a *
	Vona Menasu.	Sukhila Golmari- cha.		Sukna Golmarich.	Mari.	Kurumulaku (Un« angiyathu). 9
i	Hunise Hannu.	Tentuli.	Chinch.	Tentul.	Amli.	Puli.
	Arashina.	Haladi.	Hulad.	Halud.	Haldhar.	Manjjal.
1	• 4		1			
	its					
.1	Sebu.	Seu.	d ulurcri&iid«	Apel.	Safarjan.	Apple Pazam.
	Bale.	Kadali.	Kele.	Kala.	Kela.	Nendra Pazam.
	Kamaleku	Karamanga.	`	Kamranga.	i	Bilimbi.
	••	m m	m m	Madar.		Bilathi Ghakka.
	Ramaishala.	Sitaphala, Raja Amba.	Ram Phal.	Nona.	Ramphal.	Athamaram (Paran gichhakka).
1		••	Tipari.	Tepari.	Popta.	Kodi Nellikka.
	Geru Hannu	Lanka Amba.	Kaju Phal.	Hijli Badam.	Kajupal.	Parangi Manga.
	Kharjoora.	Khajuri.	Khajoor.	Khejur.	Khajur.	Persian (Ethhapa- zam).
	••			••		Durian Pazham.
	Anjura.	Dimiri.	Anjeer.	Dumoor.	Anjir.	Attipazam.
	Kari Drakslii.	Angur (Kala).	Draksha.	Angur.	Draksha.	Mundiringa (Xeel Jathi).
1		J	·	·		

		 .		
Name of foodstuff	Botanical name	Hindustani i	Tamil	Telugu
				Fruits
Grape fruit (Triumph) .	Citrus paradisi .	Vilaiti Chakatra.		
Grape fruit (Marsh's seed- less)	Do.	Vilaiti Chakatra Bedana.	••	••
Guava, country	Psidium guajava .	Amrud.	Koyya Pazham.	Jami Pandu.
Guava, hill	Psidium cattelianum		Seemai Koyya Paz- ham.	Konda Jami P?*id
Jackfruit	Artocarpus hetero- phyllus.	Kathal.	Pilapazham.	Panasa Pandu.
Jambu fruit	Syzigium cuminii •	<u>Taiwan.</u>	Nattaoazliam.	Narada Pandu.
"Karwanda," dry	Carrisa carandas .	Karonda.		
Killapazham (small) .	Vaccinium Lesche- naulta.		Kilapazham,	
"Korukkapalli"	Pithecolobium dulce	Manilla Imli.	Korukkappalli.	••
Lemon	Citrus limon • •	Meetha Neebu.		Gaji Nimma Pandu.
Lime	Citrus aurantifolia.	Neebu.	Elumichampazham.	Nimmapandu.
Loquat	Eriobotrya Japonica	•• ,		
Mango, green	Mangifera indica.	Am (keri).	Mangai.	Mamidi Kayi.
Mango, ripe	Do.	Am (Am).	Mam pazham.	Mamidi Pandu.
Mango '' Ankola'' .	Do.	••	Ankola mampazham,	
Mangosteen	Garcinia mangostana.	••	Mangusthan.	••
Melon, water	Citrullus vulgaris .	Tarbuz.	Darbusini (Piteha) .	Tharbuja Pandu.
Orange	Citrus aurontium .	Narangi.	KichiliDazham.	Kamala Pandu.
Orange, Washington Naval.	Do.	••		
Orange, Jaffa	Do.		••	
Palmyra fruit, tender	Borassus flabellifer .	Tar.	Nongu.	Thati Pandu.
'Pannir koyya'' or Rose apple.	Sizygaium jambos .	*	Pannir Koyya.	
Papayya, ripe .	Carica papaya.	Papita.	Pappalipazhaxn.	Boppay Pandu.
Passion fruit	Passiflora edulis .	*	••	
Peaches	Amygdalis persica .	Arhu.	••	••
Pears, country	Purunus persica .	Naspati	Berikkai.	••
Pears, English	Pyrus Achras .	• a	Val Berikkai.	••
Pears, Avocado or Butter fruit.	Persea americana .		••	••
Persimmon	Diospyros kaka	« •	••	
Pineapple	Ananas comosus .	Annanas.	AnnasiDazham.	Anasa Pandu.
Plantain (ordinary).	Musa paradisiaca	Kela. '	Vazhai Pazham.	Arati Pandu.
lantain? hill "Anaikom- l bu".		Do.	Malai Vazhaioazham.	Konda Arati.
Plantain (red variety)	Musa rubrum .	Alucha, Zardalu.	Sevvazhai Pazham.	Erraarati Pandu.
dums (red variety)	Primus domestica .	••	Alpogada Pazham.	Alpogada-Pandu.

Kanaresc	Oriya	Marathi	Bengali	Gujarati -	Malayalam
1—contd.		-			'\
	Bada-Angur.		Bilati Batabi (Jam- bu ra).		Mundri pazam- (Tryampti).
			Bilati Batabi.	Chakotra.	Mundiri pazam (Kuruvillathathu).
Seebai.	Desi-Pijuli.	Peru.	Payara (Dcshi).	Jam Phal.	Nattu Perakka.
Be'la Seebai.	Pahadi Pijuli.		Payara (Pahari).		Malam perakka.
Halasu.	Panasa.	Phunas.	Kanthal.	Phanas.	Chakka.
Neralai.	Jamu-Koli.	Jhambhool.	Kalo Jam.	Jambu.	Jambu pazam.
•••	Kendu.	Karwand.	Karamcha.	Karwanda.	Karwandai. (Un- angiyathu.)
l 1 .			••		Kilapazham (Che- ruthara).
		Vilayati Chinch.	Bilati Tetul.		Korukkapalli.
Gaja Nimbe	Kagajilembu.	Limbu.	Lcbu (Mitha).	Limbu.	Poo Naranga.
Nimbe.	Gangakulia Lem- bu.	Mosumbe.	Lcbu (Kagji or Pati).	Kadgi Limbu.	Cheru Naranga.
Laquot.]	Lukat.			Lokvat pazam.
Mavina Kayi.	Kancha-Amba.	Amba Kaccha.	Kancha Am.	Keri.	Manga (Pachha.)
\f AVÎTIA TTsinnii iftAoviuci niuiuUi	Pachila Amba,	AmbaPiklela	Paka Am.	Keri.	Mampazam.
		Do.	Am(Anltola)	••	Manga (Ankolla).
Mangusthan.	••	••	Mangustin.	••	Mangosteen pa zam.
Kallangadi.	Taruvuja.	Kalingud.	Tarmuj (Jol).	Tarbuj.	Vattakka.
Kithilai.	Kamala.	Santre.	Kamala, Lebu.	Santra.	Madhura Naranga.
•	••	Mosumbe.	Kamala.	••	 '
ļ	m m	Mosumbe.	Kamala.		
That! Nungu.	Tala	Shindi, Shirani.	Tal Shash.		Elam panamkai $^{\theta}$
Panneralai.	Ghhota-Pijuli (Pahadi).	JambhooJ.	Jamrul.		Pannir Koyj'a.
Pharangi.	Pachila Amrut- bhanda.	Popai.	Paka Pepe.	Popaya.	Pappaya pazam.
	••	••	Passion Phal.		Kireeda Pooched Pazham.
Mara Sebu	Piccuu.	Peech	Peach Phal.	Peech.	Peechas pazam.
	Desi Nasapati.	Nashpati.	Nashpati (deshi).	Naspatti.	Nattu Berikka.
	Bilati Nasapati.		Nashpati (Bilati)		English Berikka.
••			Kulunashpati.		Avocado Berikka
	••		Gav.	•	Persiman Etha pa
Ananas.	Sapuxi Panas.	Ananas.	Anarasli.	Ananas.	Kayitha Chakka.
Bal.	Champa Kadali,	Kele.	Kala.		Vaza pazam (Sad harana).
Mala Balfli	Pahadi Kadali,	Do	Kala (Pahari).		Mala vaza pazam (Anaikombu).
Knnivaifli ivcuivaiMii	Amrutphani Ka-	Thambadi ICeli.	Agniswar Kala,	Lai Kela.	 Chenkadali pazam
					Draksha pazam (Chuvanna Tha ram.)

Name of foodstuff	Botanical name	Hindustani	Tamil	Telugu
				Fruits
Pomegranate	Punica granatum,	Anar.	Madalampazham.	Danlimma Pandu.
Pomeloe	Citrus maxima •	Ghakatra.	Bombalimas.	Edapandu Pampara
1 omeroc				Panasa.
'Quince	Čyoonia oblonga • '	Bihi.	Seemai Madalai-Virai ,	Seema DaliiAma Vithulu.
Radish fruit	Raphanus sativus •	Singri.	Mullangi.	Mullangi.
Raisins (preserved).	Vitis vinifera •	Kishmish.	Kodimunthiri.	Kisumisuc^ettu.
•"Seetha Pazham" or custard apple.	Anana nuamou .		Seetha Pazham.	Seetha Phalam. i
Strawberry	Fragaria vesca	Straberry.	••	·· ·
"'Thavittu Pazham'*	Rhodomyrtus to- mentosa.	•• }	Thavittu Pazham.	
Tomato, ripe	Lycopersicum cscr**	Vilayeti Baingan.	Thakkali Pazham	Seema Vanga Pandu.
Tree tomato . , .	Cyphomandra bet- acea.	••		
"Vikki Pazham" or wild Olive.	Eleocarpus oblongus	••	Vikkipaftham.	
Wood apple	!. Timonia acidissima	Kaith.	Vilampazham.	Velaga PanAi.
Tamarind, pulp	Tamarindus indicus	Imli.	Puli.	Chintha Pandu.
Zizyphus	Zizyphus mauritiana	Ber.	Elanthapazham,	Regu.
	•			Flesh
Beef (muscle)		Gaika Gosht.	Mattu eraichi.	Go Mamsamu.
Crab (muscle)		Kckra.	Nandu.	Endraga Peetha.
Egg, duck		BatakhkaAnda.	Vathu Muttai.	Bathu Guddu.
Egg, hen		Murgi ka Anda.	Kozhi Muttai.	Kodi Guddu.
Fish (Mangalore, big fish)		Machhli.	Meen.	Ghapa.
Tish (Mangalore, small fish,) . • • • <u>•</u>	••	Meen.	
Fish "Vajra"		••	Meen.	1
Liver, sheep		Kaleji (B icr).	Attu Eeral.	Gorrai Karjamu.
Mutton (muscle)		Bakri ka Gosht.	Attu Eraichi.	<u>Ma</u> msamu.
Pork (muscle)		Suar ka Gosht.	Panni Eraichi.	Pandi Mamsamu.
Prawn (muscle)		Jhinga.	Era.	Royya.

II—contd. °

Kanarese	Oriya	Marathi	Bengali	Gujarati	Malayalam
	·			<u> </u>	
—CORcld.	Dalimba.	Dalimb.	Dalim.	Delemb	
Daninbari.	Daninba.		Danm.	Dalamb.	Ma thalampazam-
Ghakkota.	Batapi-Lembu.	Paņnas.	Batabi'Tatnhiira	* flpn us •	Pomelo pazam.
	. «		Bilati Bael.		Vilvam (Kuva- lam).
Mullangi.		Dingri.	Bilati Mula.	Dingri.	Mullangikai.
Drakshi.	Kismis.	Manuka.	Kismis.	Khismis. •	Unakku Mundi- ringu (Sarkarayil- ittu vechathu).
Seetha Pala.	Ata (Badhial).	Shita Phal.	Ata Phal.	••	Seetha pazam.
» ' *	Staberi.	Straberi.		Strawberry.	Strabery pazam.
	Jangli Pijuli.	••	Bilati Begun.	••	Thavittu pazam.
Chappara Badane.	Bilati Baigana.	Tomato.	••	Paka Tamata.	Thakkali pazam.
••	••	•	,	<	Marathakali.
•	. .	••	Jal Pai.	••	Vikki pazam.
Bcla.	Kaitha.	Kuvath.	Kathbael.	Kothu.	Vilam pazam.
Hunise.	Tentuli.	Chinch.	Tentul.	аа	Puli. ^
Yelachi.	Barakoli.	Bor.	Kul.	Bor.	Eilanda pazam.
Foods.		,			
Danda Mamsa.	Goman.«a.	Go-Mans.	Gomangso (Peshi).	Gomas.	Gomamsam (Dasa).
TSalli Mamsa.	Kankada.	Khekra.	Kankara (Peshi).	Karachlo.	Nhandu (Dasa).
Bathu Motte.	Bataka Dimba.	Ande, Budak.	Dim (PantihasJO.	Batak-Nu-Indu.	Vatthu Mutta.
Koli Motte.	Kukkuda Dimba.	Ande, Kombdi.	Dim (Murgi).	Margi-Nu-Indu.	Kozhi Mutta.
Mangalore Dodda Msena.	Bada Machha.	Masali.	Matsha (Bara Mangalore).	Machhli.	Malsyam Manga lapurathu Ninnu Kittunna Viliya Malsyam.
Mangalore Chikka Meena.	Chhota Macha.	Masali.	Matsha (Ghota Mangalore).	, u	Malsyam (Man galapurathuninnu Kittunna Gherya Malsyam).
	Gania Machha.	Masali.	Matsha (Vajra).	a a	· Vaijra Malsyam.
	Mendha Kalija.	Kaleej.	Mete (Vera).	Kaleju.	Attin Karalu.
Mamsa.	Mansa (Ghhelior Mendha).	Mans, Sheli.	Vera Mangso (Peshi).	Ghetanu Gos.	Attirachhi (Dasa).
Handi Mamsa.	Ghusuri Mensa, (Ghingudi).	Mans, Dukar.	Sukar Mangso (Peshi).	Suvarnu Mas.	Panni erachhi (Dasa).
a >	Ghingudi.	Jinga.	Bagda Ghingri (Peshi).	Zinga.	Chemmeen (Dasa).

_		_		_	ALLENDIA
_ Name of foodstuff			Hindustani	Tamil	Telugu
					Milk and
Milk, cow's	•		Gai ka Dudh.	Pasum Pal.	Avu Palu or
Milk, buffalo's			Bhains ka Dudh.	Erumai Pal.	(Geda palu). Barrae Palu.
Milk goat's			Bakri ka Dudh.	Attu Pal.	Meka Palu.
Milk, human ,	•		Aurat ka Dudh.	Thayin Pal.	Charm Palu.
Curds			Dahi	Thayir.	Perugu
Butter-milk			Matha.	More.	Majjiga.
Liquid Skimmed milk			ļ	Kadaintha Pal.	:.
Skimmed milk powder			i	Kadaintha Pal Thool.	
Simmled Hims powder 1 1	-		''		•
Cheese.	•	•	Panir.	Palkatti.	Junnu.
"Koa" (whole buffalo milk) • •	•			Theratti Pal.	Kova.
«Koa" (skimmed buffalo milk)	•	•			
					 Miscellaneous
Arecanut (Areca cathecu)			<u></u>	Pakku.	Poka Kaya, Vakka.
Arrow-root flour (West Indian)	(Morda	ınt		Kuva Mavu.	Pala Gunda.
arundinaceai. Betel leaves {Piper belle}	``		Pan.	Vethilai.	Thamala Paku.
Coconut, tender				Elanir.	Latha Gobbari.
Coconut water	·	•		Thengai Thannir.	Gobbari Kaya Niru.
Cod liver oil	•		Machhli ka Tel.	Meen Ennai.	Chapa Noonei.
Halibut liver oil	•		Machhli ka Tel.	Meen Ennai.	onupu roonen
Jaggery	•		Gur	Vellum	Bellum.
	•	•		Kalipakku.	
"Kalipakku"	•		••	, Kanpakku.	
'iMadapu _S inja"	•		••		••
"Makhana"	٠	.	••	n v. i	**
Malted palmyra root	•	.	••	Panam Kizhangu.	Thegalu.
"Pappads"	•	.	Pappar.	Pappadam.	Appadam.
"Perandai" (Vitis quadrangularis)	•	١.		Perandai.	
Red Palm oil (Elaies guineensis)	•	٠1	Surkh Khajur ka (African) Tel.	Sivappu Pana Ennai.	Yerra Thati Noonei.
Sago (Metroxylon sago)		۱.	••	Jewarisi.	Saggu Biyam.
"Singhara", dry (Trapa bispinosa)	•	\cdot	••	••	Neeti Badam.
Sugar cane juice.	•	\cdot	••	Karuppanchar.	Caharaku Rasam.
Sugar cane preserves •	•	• [••	Karuppanchar.	Charaku Rasam.
Sugar cane (same cane as for above pres	erves)	٠	••	Karumbhu.	Charaku Karra.
Toddy, sweet.	•	•	Tarail.	Padaneer.	Thiyya Kallu.
Toddy, sweet (coconut)		٠ [••	Thennai Padaneer.	Kobbari Kallu.
Toddy, fermented (coconut) • •	•	$\cdot $	·•	Thennang Kallu.	●
Toddy, fermented (obtained from a shop	o) .		•••	Kallu.	Kallu.
Yeast, dried	•	$\cdot $	••	••	••

II—concld. '

I		2 1		<u> </u>	
Kanarcsc	Oriya	Marathi	. Bengali	Gujarat!	Malayalan
Milk product	ts	· · ·	<u></u>		···
Hasuvina Halu. Cai Dudha.		Dudh, Gav	Dudh (Garu).	Gaynu Dudh.	Pasuvin pall.
Yemme Halu.	Mainsi Dudha.	Dudh, Maaish,	Dudh (Mahish).	Shesnu Dudh.	Emma pal.
Acswa Halu.	Chhcli Dudha.	Dudh, Sheli.	Dudh (Sagal).	Sakrinu Dudh.	Attin pal.
Yede Halu.	Maa Dudha*>	Dudh, Stri.	Dudh (Manush).	Strinu Dudh.	Miifaippal.
Mosaru.	Dahi.	Dahi.	Dadhi.	Dahi.	Thayri.
MajjiRe.	Ghola Dahi.	Tak.	Ghol.	Ghhas.	Moru.
• •	Sarakadha Dudha.		I tfakhantana	••	Padakalanha pal.
1 "	Sarakada Dudha Gunda.		Dudh. Ma khantana Churna Dudh.	••	Padakalanba pal- podi.
. Ginnu.	Chhena.	Khava.	l'anir.	Paneer.	Palkatti.
Khova.	Khua.		Khoa Khir (Ma-	••	Thani eruma pal Kondulla 'Kova*.
			hish Dudh). Makhantana Khoa.	••	Pada ncckkiya Eruam Pal Kon- dulla ⁽ Kova'.
Foodstuffs					
Adifc.	Gua.		Supari.	Sopari.	Adakka.
	Araroot.	••	Tavkeel.		Koovapodi.
!	Pana.	••	Pan.	Nagarvelna Pan.	Vettila.
Yd. Nee.	Paida.	Shahale.	Dab (Kanchi		
Thengu Nerru.	Paida Pani.	Naral Pani.	iNariKeii. > Narikel (Jol.)	Pani Natiyal	••
CnA \feen Yenne.	liCadainachha. T.d.a.	••	God Matsha Tail.	Ko Machhlined Tel.	
	Halibat Machha	••	Halibut Matsha	1 ei. ••	Halibu Mecncnna.
Bella.	Tela. Guda.'	Gul.	Tail. Gur.	Gol.	Vellam (Sarkara).
m #	Kanchagua Sijha.		Lai Supari.	••	Kalipakku.
	Ganjci, Pad.	••			
	Piukar.	٠	Makhna.	Makhan.	••
a ·	Tala Kanda.	• m			Africa Thengenna.
Happala.	Papada.	••	Papar.	Papad.	Pappadam.
Perundai.	Siju.		Har, Harbhanga.		Peranda.
	Khajuri Tela (Nali)		Khejur Tail.		••
٠	Sagudana.	Sabudana.	Sago.	Sabudana.	••
·	Sukhila Singada.	Shingada.	Paniphal (Sukna)		••
Kubbina Rasa.	Akhu Dorua.	Uns Rasa.	IkkhuRaush(Akh)	Sherdina Ras.	Karumbin Gharu.
Kakambi.			Ghini Shira.		
	Akhu.	• m	Ikkhu.	0	••
Neera.	Khajuri Rasa.	Neera.	Mitha Tari.	Nira.	Chakka ^r nkkalhi.
Thengu Necru.	Nadia Rasa.	• ,	Tari (Narikel).	••	Thenim Ghakkara- kkalu.
Henda.*	Tadi.	Tadi.		••	Thengil ninnue*
Angadi Henda.		Tadi.	Gajan Tari.	Tadi.	Pulicha Kallu Choppil ninnu Kittiyathu. •
	Khumir		Yeast, Khamir.	Khamir.	Unangiya Sura Mandam*